

D.I.A.N.A.

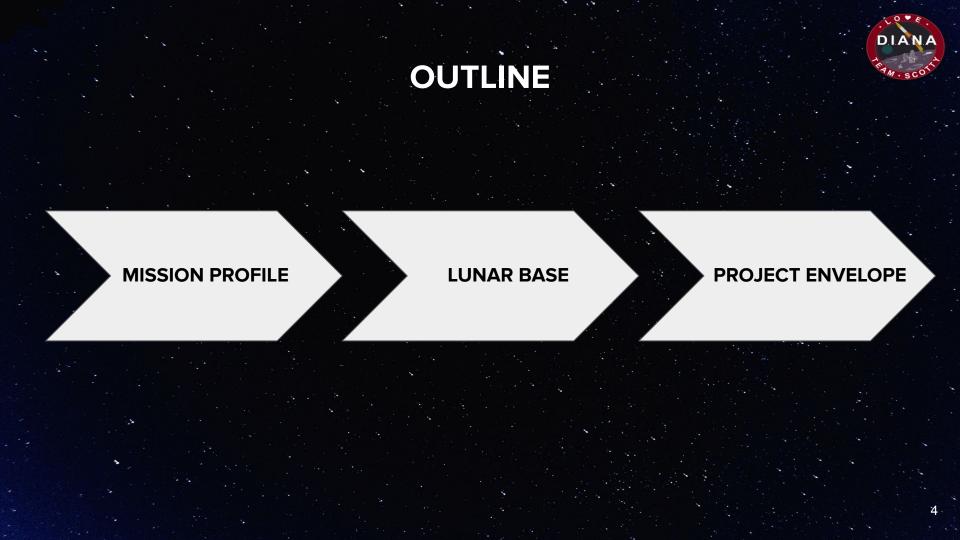
Dedicated Infrastructure and Architecture for Near-Earth Astronautics

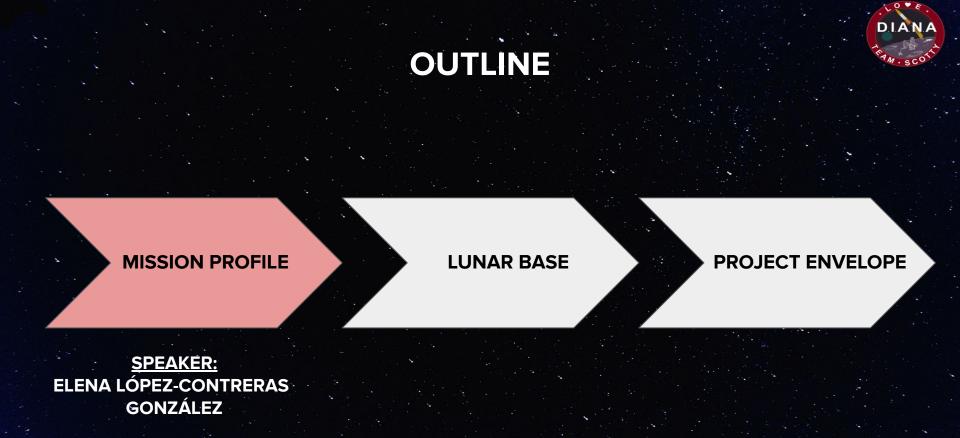
MISSION STATEMENT

DIANA

" The proposed concept of the platform shall enable scientific operations and local sorties for human and robotic exploration. The conducted scientific operations shall allow for the enhancement of our understanding of the evolution of the universe and in particular the Solar System. In-Situ Resource Utilization (ISRU) shall be integrated in the concept as much as possible."

WHY D.I.A.N.A?


DIANA



Long-term solution for a long-term goal

Ambitious timeline

Innovative design enabling sophisticated capabilities for human and robotic exploration

IMPORTANCE OF THE MOON

• Further in-situ exploration needed to understand the Solar System

• <u>Technology demonstrations</u> for future missions to Mars and beyond

• <u>Technology development</u> to sustain life beyond Earth

OBJ-00: Settle a permanently inhabited platform on the lunar surface.

- **OBJ-00:** Settle a permanently inhabited platform on the lunar surface.
- **OBJ-01:** Enhance our understanding of the evolution of the universe and in particular the Solar System.

- OBJ-00: Settle a permanently inhabited platform on the lunar surface.
 OBJ-01: Enhance our understanding of the evolution of the universe and in particular the Solar System.
 OBJ-02: The platform shall enable exploration of the local lunar
 - environment.

- OBJ-00: Settle a permanently inhabited platform on the lunar surface.
 OBJ-01: Enhance our understanding of the evolution of the universe and in particular the Solar System.
- **OBJ-02:** The platform shall enable exploration of the local lunar environment.
- **OBJ-03:** The mission shall demonstrate self-sustainable human presence on other bodies.

11

MISSION OBJECTIVES

OBJ-04: The platform shall become increasingly financially self-sustainable.

12

MISSION OBJECTIVES

OBJ-04: The platform shall become increasingly financially self-sustainable.

OBJ-05: The mission shall serve to help verify low-TRL technologies.

OBJ-04: The platform shall become increasingly financially self-sustainable.

OBJ-05: The mission shall serve to help verify low-TRL technologies.OBJ-06: The mission shall engage in international cooperation.

- **OBJ-04:** The platform shall become increasingly financially self-sustainable.
- **OBJ-05:** The mission shall serve to help verify low-TRL technologies.
- **OBJ-06:** The mission shall engage in international cooperation.
- **OBJ-07:** The mission shall provide the opportunity for public-private + partnerships.

15

MISSION REQUIREMENTS

MR-00: The mission operations shall start by 2030.

16

MISSION REQUIREMENTS

MR-00: The mission operations shall start by 2030.

MR-01: The platform shall be operable for a minimum of 15 years.

- **MR-00:** The mission operations shall start by 2030.
- **MR-01:** The platform shall be operable for a minimum of 15 years.
- **MR-02:** The platform shall sustain a minimum of four astronauts.

- **MR-00:** The mission operations shall start by 2030.
- **MR-01:** The platform shall be operable for a minimum of 15 years.
- **MR-02:** The platform shall sustain a minimum of four astronauts.
- **MR-03:** The platform shall support a radio astronomy facility.

- **MR-00:** The mission operations shall start by 2030.
- **MR-01:** The platform shall be operable for a minimum of 15 years.
- **MR-02:** The platform shall sustain a minimum of four astronauts.
- **MR-03:** The platform shall support a radio astronomy facility.
- **MR-04:** The mission shall enable direct human exploration of the lunar
 - environment.

- **MR-00:** The mission operations shall start by 2030.
- **MR-01:** The platform shall be operable for a minimum of 15 years.
- **MR-02:** The platform shall sustain a minimum of four astronauts.
- **MR-03:** The platform shall support a radio astronomy facility.
- **MR-04:** The mission shall enable direct human exploration of the lunar
 - environment.
- **MR-05:** Autonomous robotics shall supplement lunar surface exploration.

21

MISSION REQUIREMENTS

MR-06: The platform shall provide landing and launching capabilities.

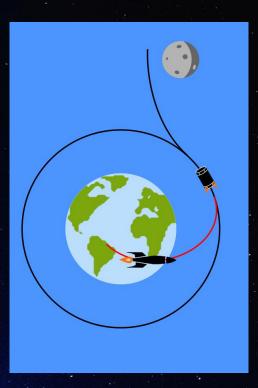
MR-06: The platform shall provide landing and launching capabilities.MR-07: The platform shall achieve TBD self-sustainability using ISRU.

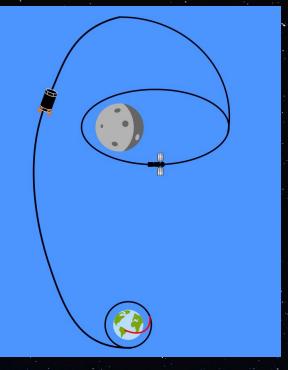
MR-06: The platform shall provide landing and launching capabilities.
MR-07: The platform shall achieve TBD self-sustainability using ISRU.
MR-08: The platform shall provide continuous life support.

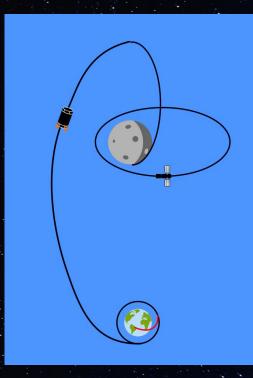
MR-06: The platform shall provide landing and launching capabilities.
MR-07: The platform shall achieve TBD self-sustainability using ISRU.
MR-08: The platform shall provide continuous life support.
MR-09: The platform shall integrate measures that promote astronaut psychology.

- MR-06: The platform shall provide landing and launching capabilities.
 MR-07: The platform shall achieve TBD self-sustainability using ISRU.
 MR-08: The platform shall provide continuous life support.
- **MR-09:** The platform shall integrate measures that promote astronaut psychology.
- **MR-10:** The platform shall continually increase in financial self-sustainability.

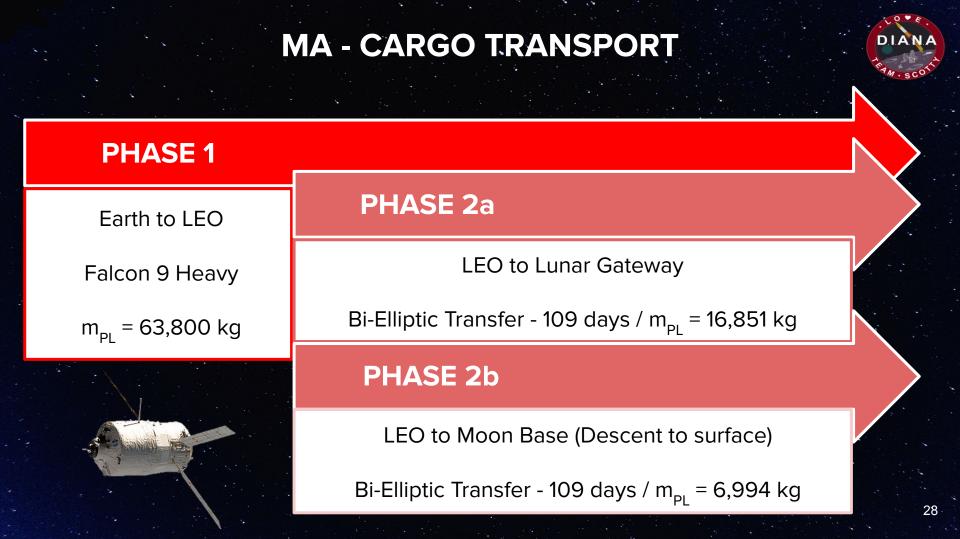
DIAN

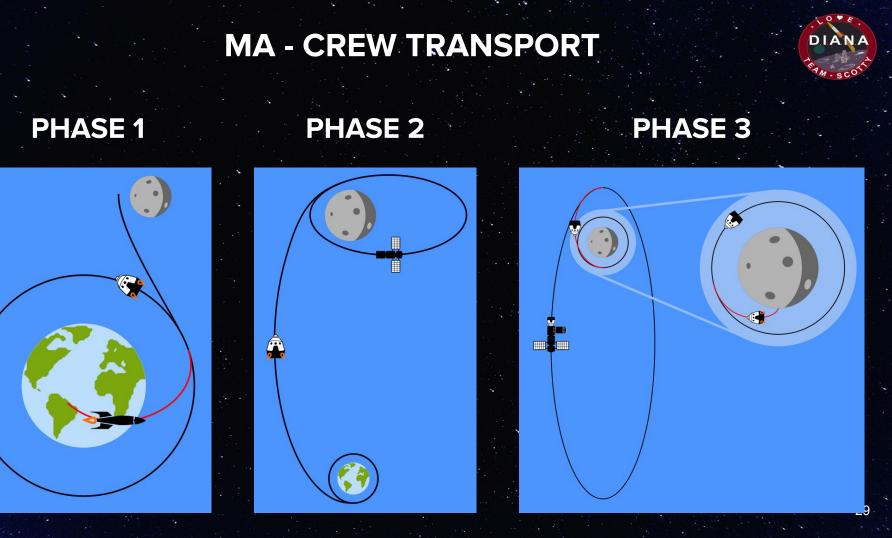



MA - CARGO TRANSPORT


PHASE 1

PHASE 2a


PHASE 2b



27

PHASE 1

Earth to LEO

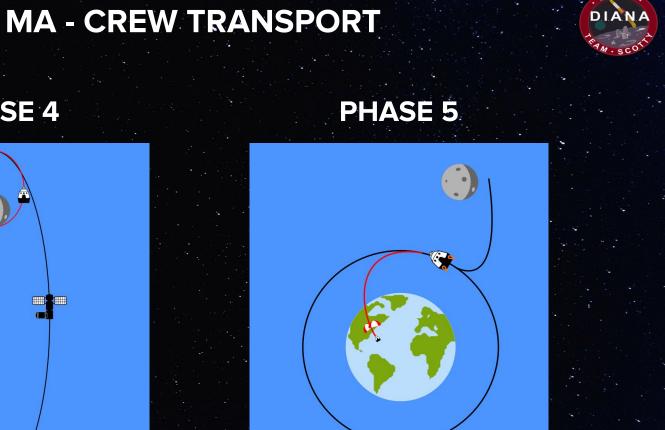
Falcon Heavy

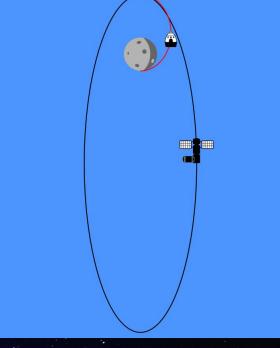
m_{PL} = 63,800 kg

PHASE 2

LEO to Lunar Gateway

Direct Transfer in 5 days with modified Crew Dragon


m_{PL} = 14,954 kg


PHASE 3

Lunar Gateway to Base

Transfer to lower LLO Descent with Lunar Lander

m_{PL} ≈ 9,000 kg

PHASE 4

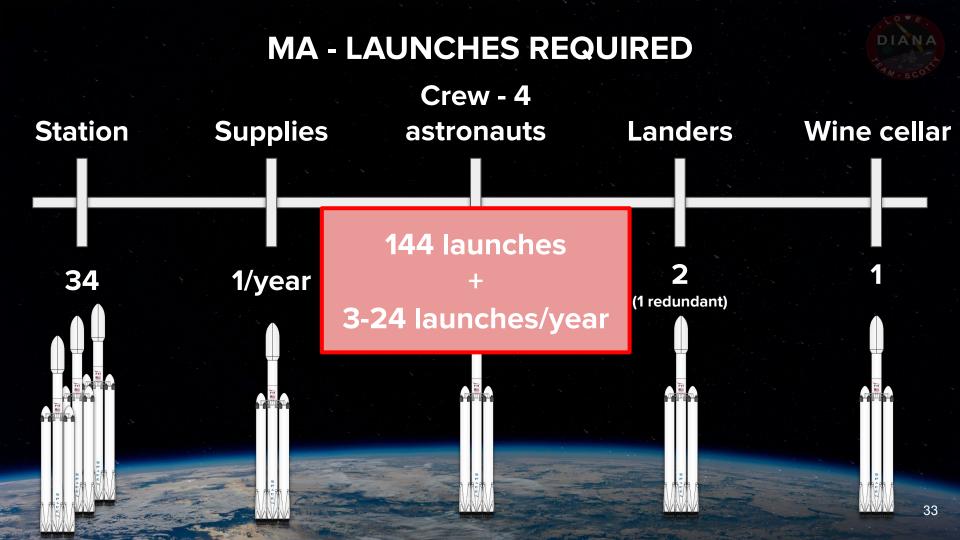

MA - CREW TRANSPORT

PHASE 4

Base to Lunar Gateway

Ascent with Lunar Lander

m_{PL} ≈ 3,000 kg



PHASE 5

Lunar Gateway to Earth

Direct Transfer back to Earth (with refuelled capsule)

m_{PL-LEO} = 15,259 kg

MA - CREW TRANSPORT VEHICLES

CREW DRAGON

Transport to the Lunar Gateway and back to Earth

Chemical Propulsion with LH₂/LOX Thruster

LUNAR LANDER

Transport to Lunar Surface and start Chemical Propulsion with CH₄/LOX Thruster (Refuel LOX on Lunar Surface)

DIANA

MA - TRANSPORT VEHICLE THRUSTERS

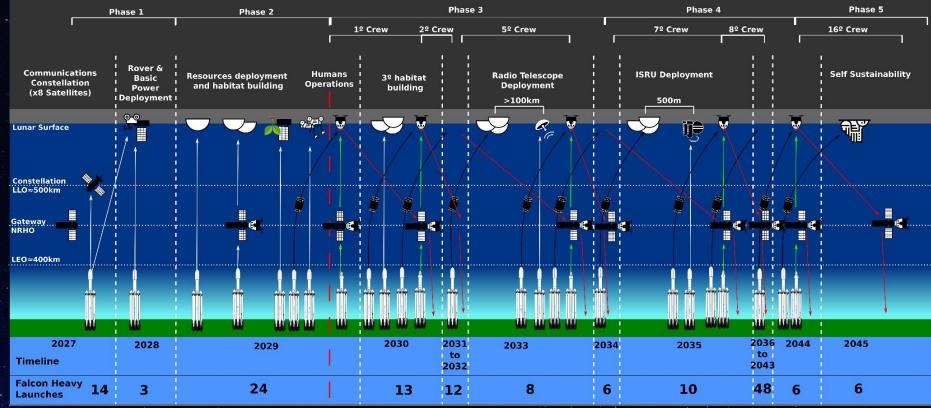
CREW DRAGON/ CARGO VEHICLE

RL-10

LH₂/LOX Thrust: 110 kN Mass: 301 kg I_{sp}: 465 s

LUNAR LANDER

Raptor (modified)


CH₄/LOX Thrust: 90.5 kN Mass: 300 kg I₂: 378 s

35

DIANA

MA - D.I.A.N.A. BAT DIAGRAM

MA - DELTA-V BUDGET

Cargo to Gateway / 16,851 kg			
Phase	Delta V (m/s) Margins		
1	9.4	Earth-LEO	
2	3909	LEO-Gateway	
Total	3918.4	(m/s)	

Cargo to MoonBase / 6,994 kg			
Phase	Delta V (m/s) Margins	Route covered	
1	9.4	Earth-LEO	
2	3909	LEO-LLO	
3	1995	LLO-MoonBase	
Total	5913.4	(m/s)	

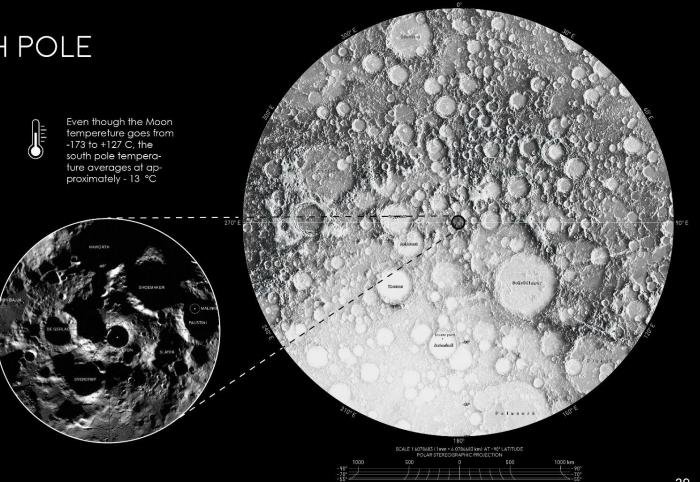
Crew			
Phase	Delta V (m/s) Margins	Route covered	
1	9.4	Earth-LEO	
2	4147	LEO-Gateway	
3	537	Gateway-LLO	
4	1900	Gateway-Surface	
5	3003	Surface-Gateway	
6	4147	Gateway-Earth	
Total	13743.4	(m/s)	

37

LOCATION

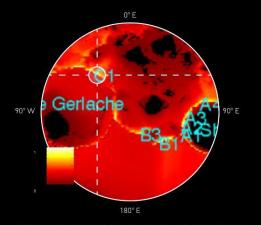
LUNAR SOUTH POLE

The south polar region is a **heavily cratered terrain** with dramatic topography

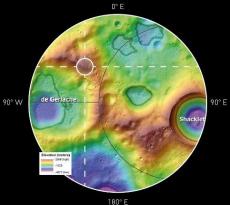

Its craters have been **untouched by sunlight for billions of years** offering an undisturbed record of the solar system's origins

Its permanently shadowed craters are estimated to hold nearly 100 million tons of water

Its regolith has traces of hydrogen, ammonia, methane, sodium, mercury, and silver making it an **untapped** source of essential resources

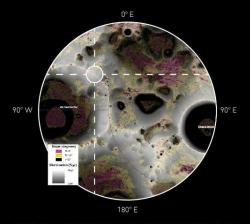


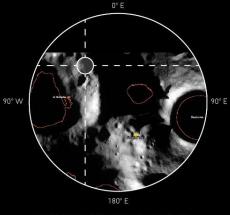
LUNAR SOUTH POLE



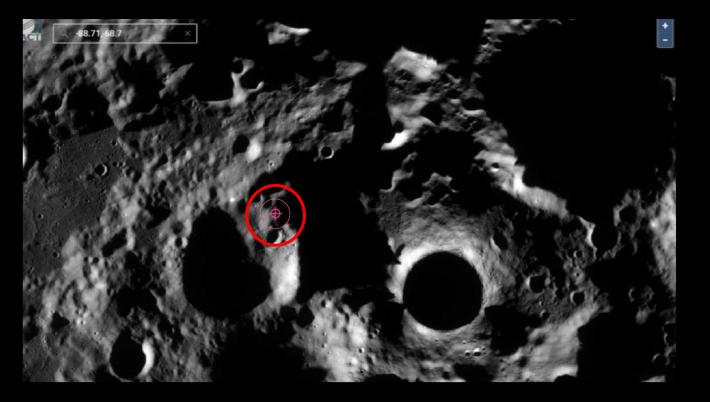
Location Candidates: De Gerlache crater ridge

+ already investigated as a lunar station site by ESA


LUNAR SOUTH POLE AVERAGE SOLAR ILLUMINATION

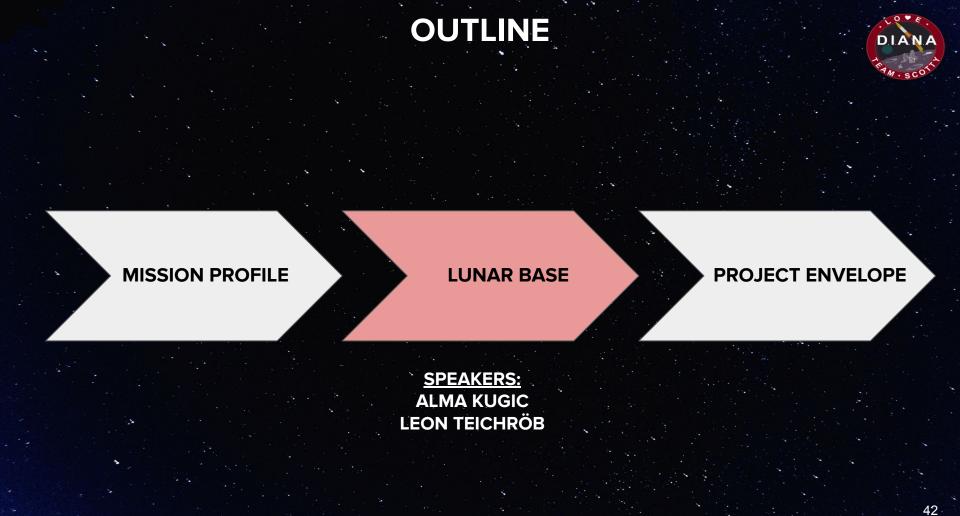

100 E

TOPOGRAPHY AND PERMANENTLY SHADED REGIONS



ANNUAL ILLUMINATION AND TOPOGRAPHIC SLOPE

TOPOGRAPHY AND PERMANENTLY SHADED REGIONS


LAT 88.71 S. LON 68.77 W

Min: 64% light per lunar day

Max: 98% light per lunar day

~6 days darkness followed by ~7 days of intermittent light and darkness periods

OVERVIEW OF SUBSYSTEMS

ARCHITECTURE AND INNER DESIGN

$\mathsf{D.I.A.N.A}$

Dedicated Infrastructure and Architecture for Near-Earth Astronautucs

TIMELINE 2027 2029 2030 2045 •••••

INFRASTRUCTURE CREW ARRIVAL DEPLOYMENT **1ST PHASE**

Initial habitat components have been launched to the Moon and are robotically assembled before the arrival of astronauts

4 astronauts arriving to the Moon and connecting the habitat with life support systems and power supply

EXPANSION 1 2ND PHASE

Expanding the settlement for future astronauts by adding more inflatable modules; sleeping quarters, science labs and additional greenhouse

EXPANSION 2 3RD PHASE

Expanding the Lunar base by constructing a sustainable settlement by using enhanced in-situ 3D printing methods using regolith as material

ASTRONAUTS LAUNCH TO FIRST PROGRAM LAUNCH TO THE MOON: THE MOON WITH:

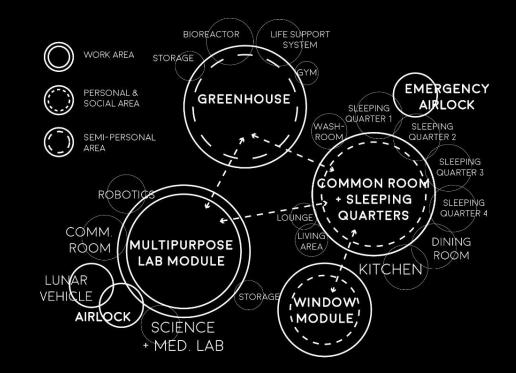
- Telerobotics & autonomous systems for the initial infrastructure of the lunar base
- Inflatable modules for science and living shielded using in-situ regolith
- Prepare the lunar base for arrival of astronauts

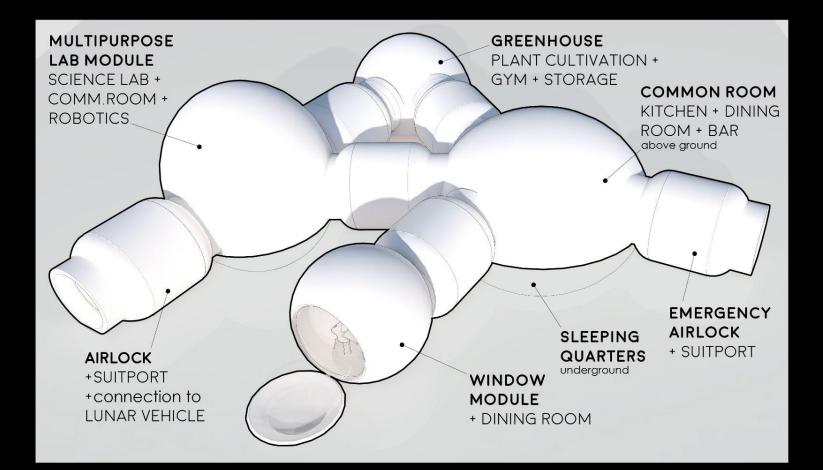
- Relevant scientific payload
- EVA robotics
- Higher capacity construction • robotics for a more sustainable infrastructure

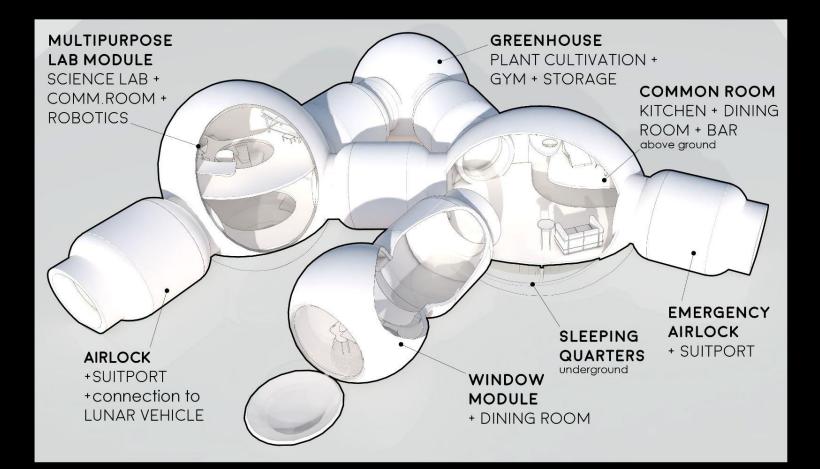
HABITAT CONCEPT

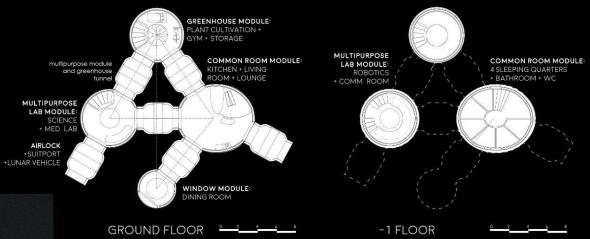
ST PHASE preparing the site for the arrival of the first 4 people on the Moon

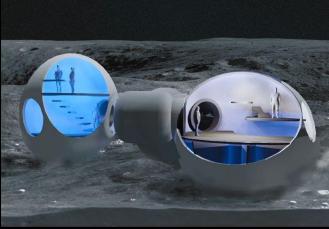
Initial infrastructure components of the settlement have landed on the Moon

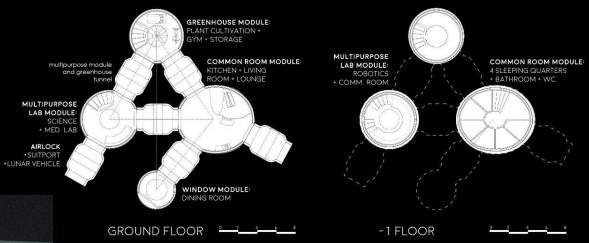

Excavating the regolith from the lunar surface

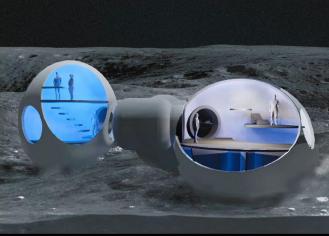


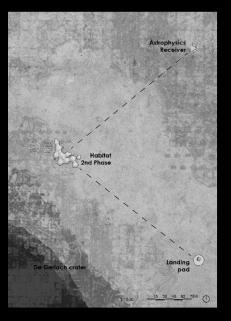

Placing a prefabricated airlock and inflating the modules

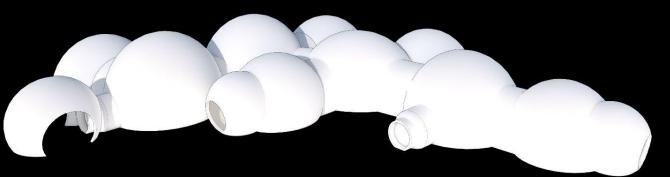

Contour crafting above the inflatable modules as a radiation protection

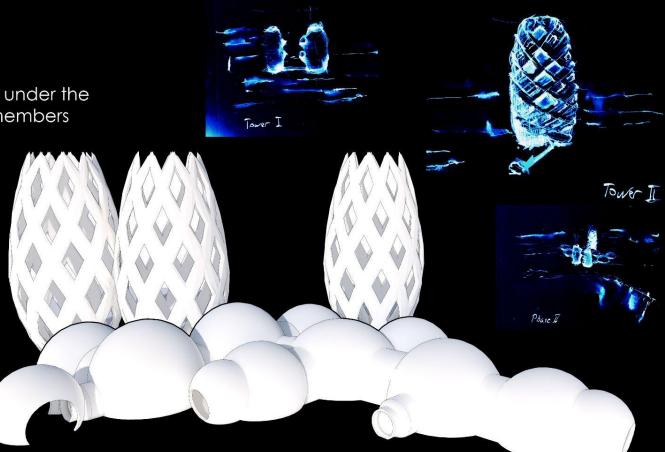




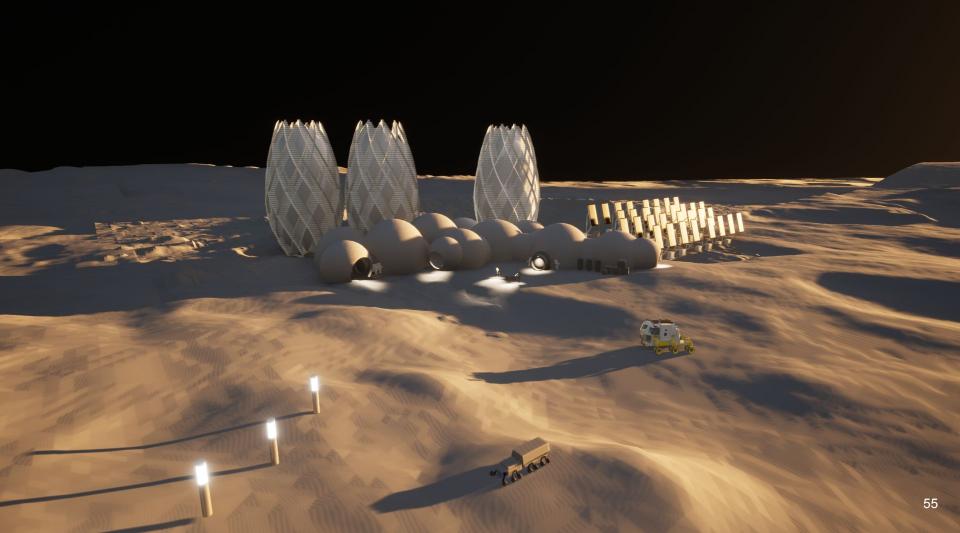


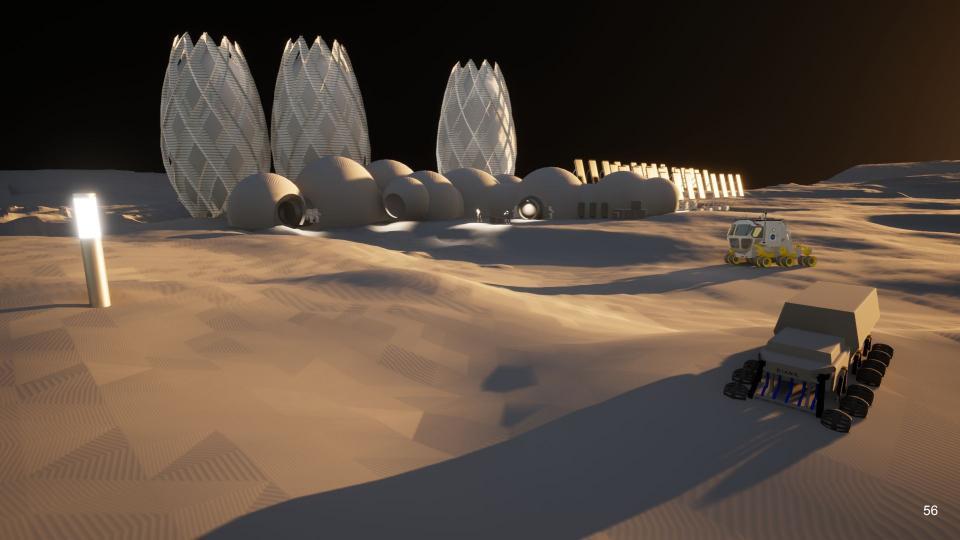

ST PHASE Contour crafting above the inflatable modules as a radiation protection



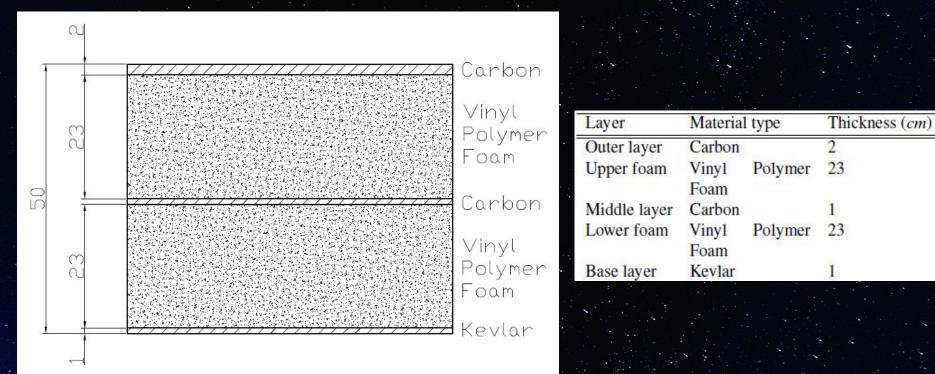


- + Science Laboratory
- + Greenhouse
- + Sleeping quarters
- + Storage



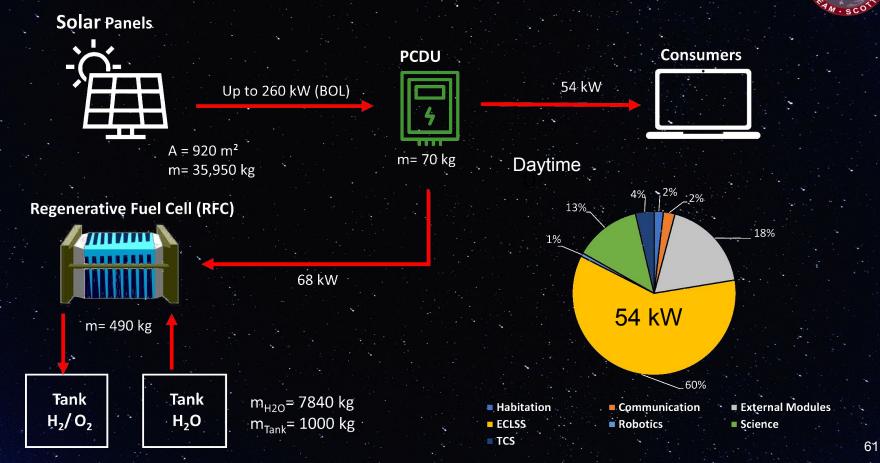

RD PHASE expanding the habitat under the supervision of 8 crew members

- + 3D printed habitat that offers better living conditions
- + Adding sleeping quarters + better social activities
- + Expanding Science lab + Robotics + adding more modules for storage
- + Expanding the Greenhouse



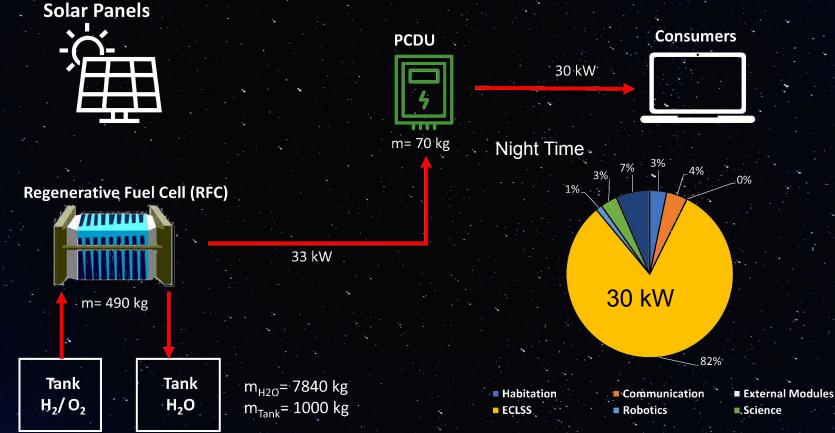
STRUCTURES

STRUCTURES


Summary	227,003 kg	
 EPS	45,395	
TCS	8,250	
Science	4,391	
Robotics	63,752	in [kg]
Radiation	47,723	그는 것 같은 것 같은 것은 것을 가지 않는 것 같이 있는 것 같이 없는 것 같이 없다.
ECLSS	6,584	Station Mass Budget
External modules	16,941	
Communication	189	
Habitation	33,777	

OVE **ELECTRICAL POWER SYSTEM** DIANA M. SCO Solar Panels PCDU **Consumers** $A = 920 \text{ m}^2$ m= 70 kg m= 35,950 kg **Regenerative Fuel Cell (RFC)** m= 490 kg > Tank Tank т_{н20}= 7840 kg H₂O H_2/O_2 m_{Tank}= 1000 kg 60

ELECTRICAL POWER SYSTEM


OVE

DIANA

ELECTRICAL POWER SYSTEM

ELECTRICAL POWER SYSTEM

System Power Consumption Budget in [W]

ECLSS	32,841	
External Modules (ISRU)	10,000	
Science	7,200	
Communications	1,250	
Robotics	375	
Summary	51,666 W	

THERMAL CONTROL SYSTEM

Insulating properties

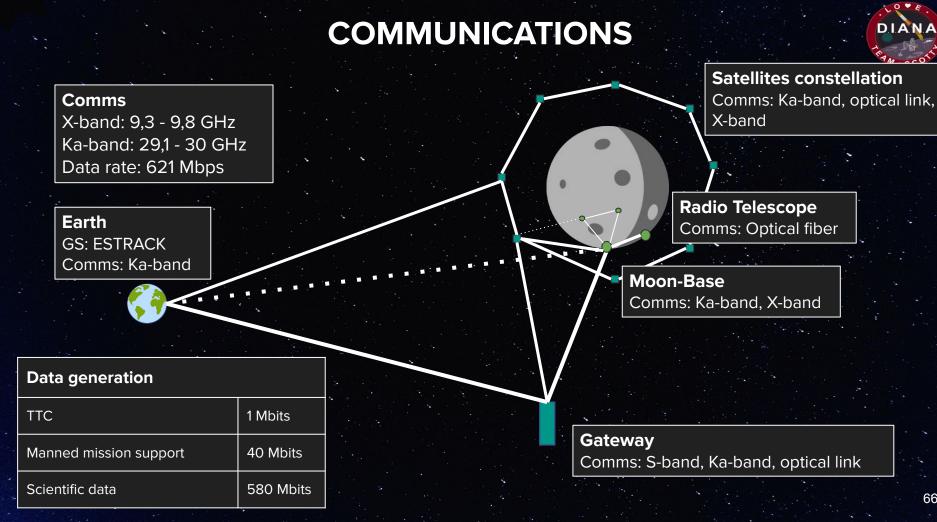
Regolith

Interior remains insensitive to external environment

Only 2% of needed heat dissipation

Coldest internal temperatures 20°C

TCS must be able to dissipate at least 60 kW of heat


THERMAL CONTROL SYSTEM

Internal environment temperature will sustain its uniformity with cold plates in each module transporting the heat of the equipment

Secondary dual phase ammonia loop connects the heat exchange bus to heat pipe radiators Dual phase water loop connecting the cold plates to a central heat exchange bus

Radiators are covered with Optical Solar Reflective tiles so that even at their EoL conditions, they sustain their radiative capacity

COMMUNICATIONS

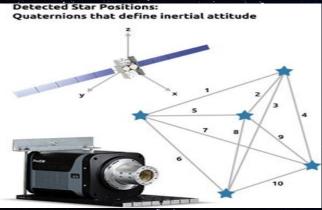
GROUND STATIONS

LINK BUDGET

Symbol	Parameter	Best case value	Worst case value	Unit
P_T	Transmitter power	17,78	17,78	dBW
G_T	Transmit antenna gain	51,0	47,9	dBi
L_S	Free space loss	-175,70	-178,63	dB
L_A	Channel loss	-0,1	-3,0	dB
G_R	Receiving antenna gain	50,8	47,7	dBi
k	Boltzmann constant	1,38E-23	-	J/K
R	Data rate	621	621	Mbps
$\frac{E_b}{N_0}$	Energy per bit to Noise-density	59,76	49,74	dB
-	Margin	54,51	41,99	dB

ESTRACK network

Attitude & Orbit Control System (AOCS)



The lander module attitude and orbit controls are controlled by a system consisting

of sensors, actuators and software.

The selected sensors and actuators:

- Star trackers
- Sun sensors
- GPS receiver
- Reaction wheels
- Thrusters (22 N)

ROBOTICS & EVA

Lunar Base Construction 、

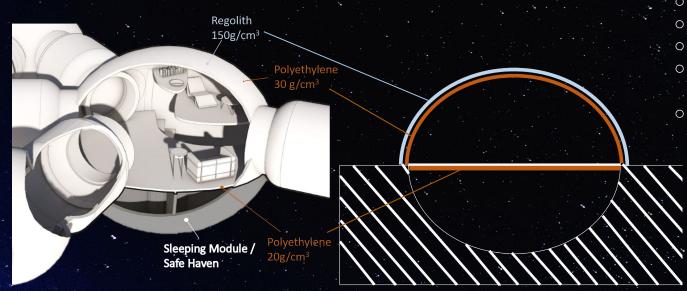
Tasks

Human Assistance for EVAs

Science

Spacesuits

CARATERSTICKE ETIROLOGIA & TESSUT



RADIATION

- Shielding by Mass: ISRU: Overall Base shielding Regolith 200g/cm²
- Safe Haven: Regolith 150g/cm² and Polyethylene 30g/cm² outer surface + Polyethylene Floor 20g/cm²

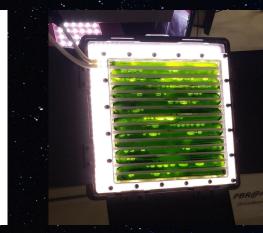
- EVA => SPE => about 20 min time => HDPE Blankets /Pressurized Car/ EVA suit
- Secondary Approaches:
 - Pharmaceutical
 - Infrastructural Approaches
 - Mission Scheduling
 - Crew Selection (Gender
 - and Age)
 - Monitoring (Active & Passive Dosimeter)

72

Water Recovery Systems

Advanced Closed Loop System

Physico-Chemical LSS


Photobioreactor

End of 2029

TRL 9

Figure 6.7: NASA: Water Recovery System. Credit: NASA

ECLSS

Water Recovery Systems

Advanced Closed Loop System

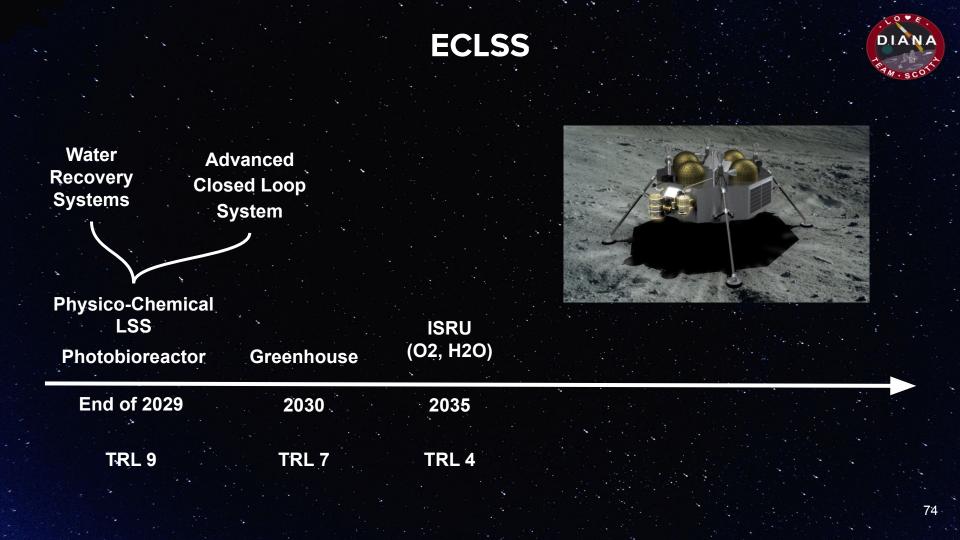
Physico-Chemical LSS

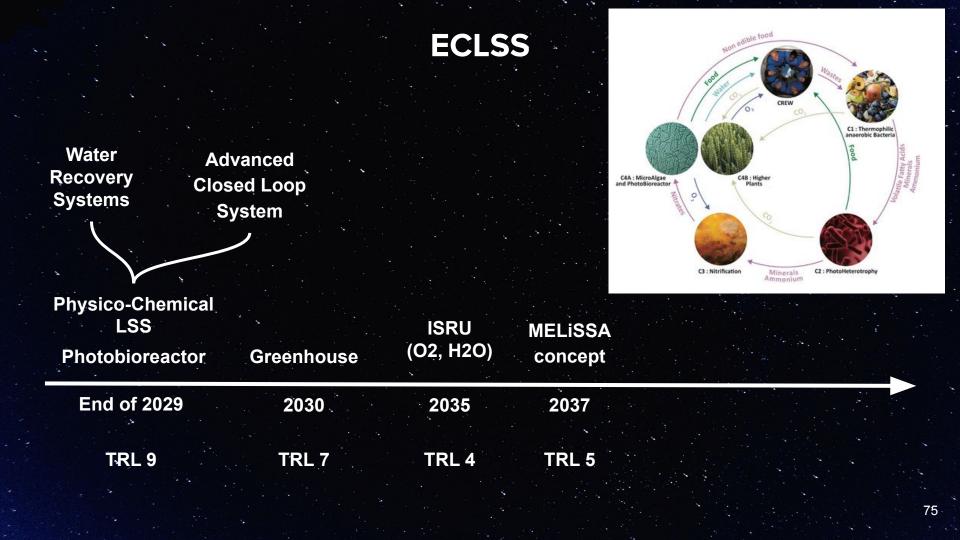
Photobioreactor

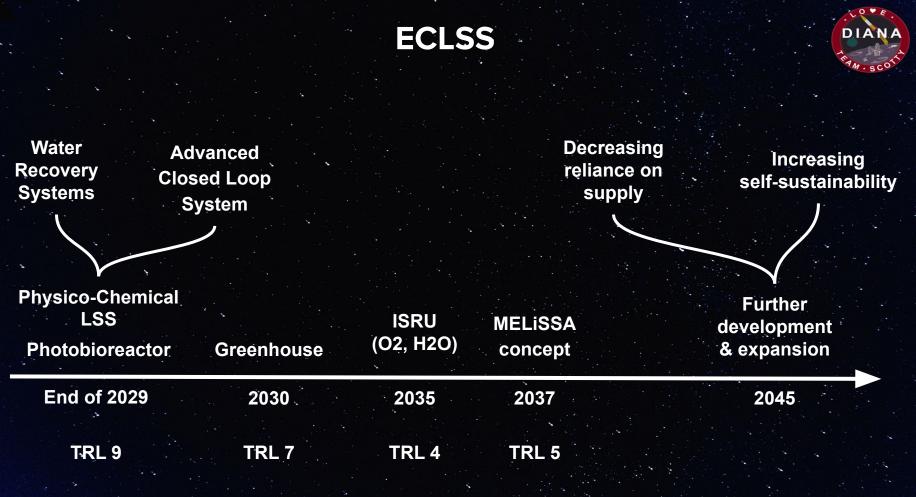
End of 2029

Greenhouse

2030




Figure 6.11: The Prototype Lunar Greenhouse from the outside [Credits: ag.arizona.edu/lunargreenhouse/]


TRL 9

73

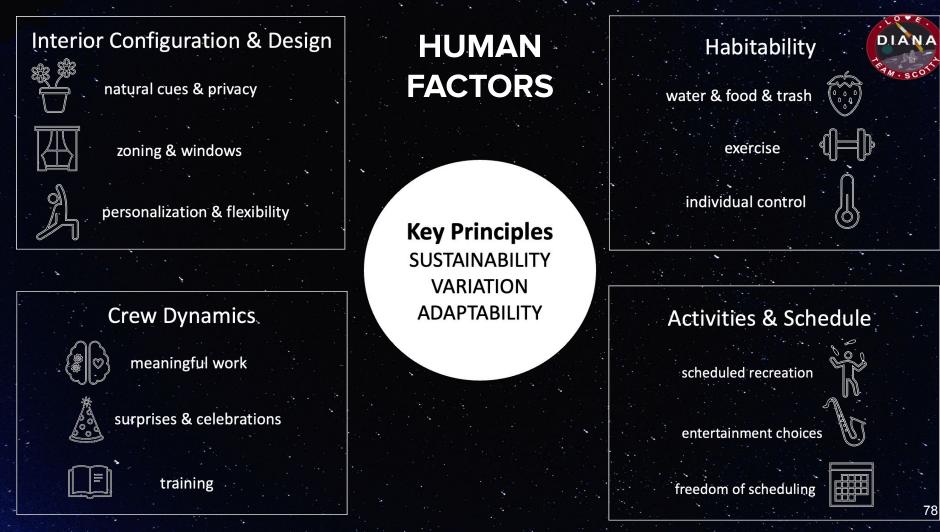
HUMAN FACTORS

crew performance

optimize

well-being

mission success


work output & productivity

holistic astronaut health

Key Principles: sustainability, variation, adaptability

77

Scientific Drivers for Radio Observations

- red-shifted spectral lines
 → research on evolution of the universe
- planetary & solar radio emission
 → learn about magnetic fields, ionospheres, ...

Scientific Drivers for Radio Observations

- red-shifted spectral lines
 → research on evolution of the universe
- planetary & solar radio emission
 → learn about magnetic fields, ionospheres, ...

Scientific Drivers to go to the Moon

- astronomical radio signals are very faint
 → far side of moon = low noise environment
- radio signals have long wavelengths
 → lots of space for large apertures or baselines

Scientific Drivers for Radio Observations

- red-shifted spectral lines
 → research on evolution of the universe
- planetary & solar radio emission \rightarrow learn about magnetic fields, ionospheres, ...

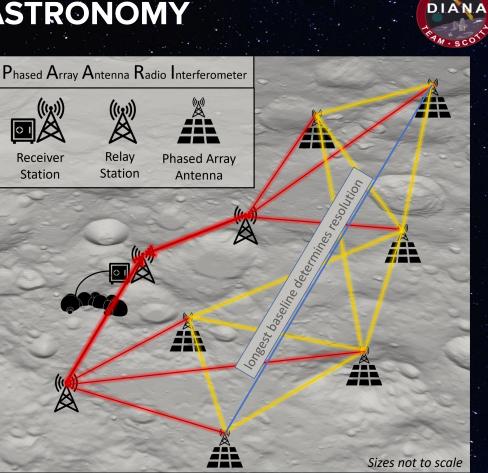
Scientific Drivers to go to the Moon

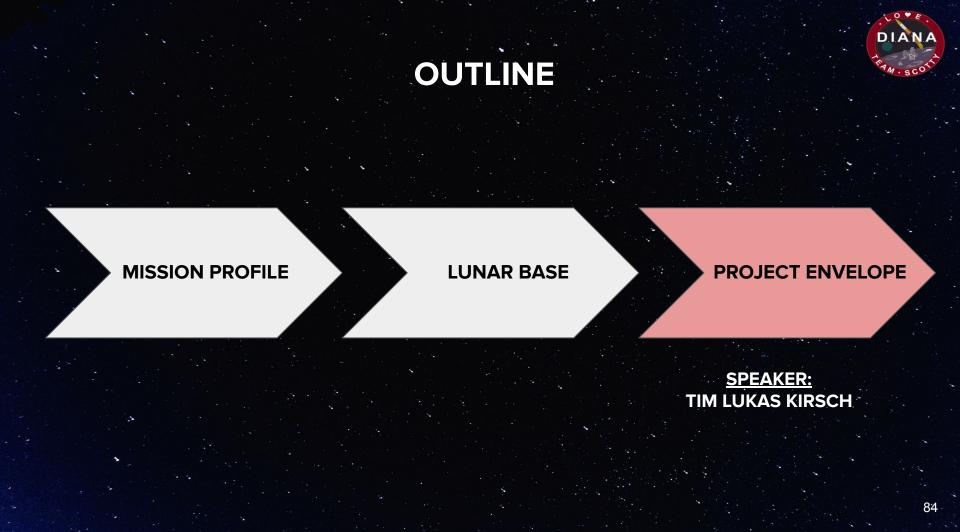
- astronomical radio signals are very faint
 → far side of moon = low noise environment
- radio signals have long wavelengths
 → lots of space for large apertures or baselines

Implementation

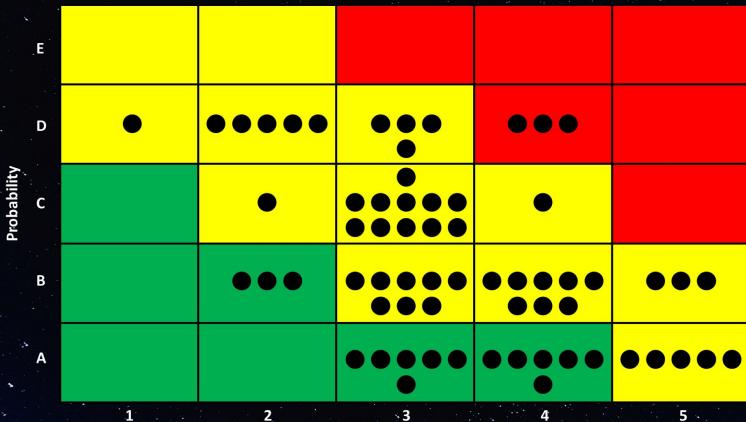
- Very Long Baseline Interferometry → high resolution, with 500 km baseline already better than ALMA on earth
- Phased Array Antennas
 → autonomous deployment by unfolding

Laser Optical Communication

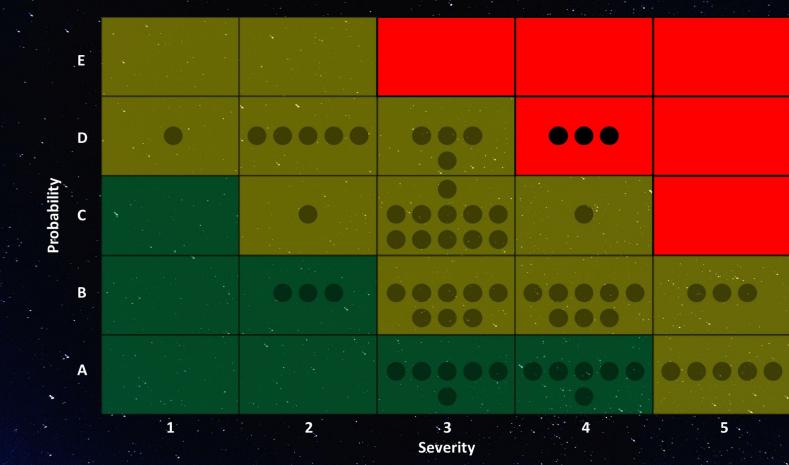

science data transfer


Laser Time-of-Flight Measurement distance between antennas

Very Long Baseline Interferometry with Super Computer at Base


- modular design

- easily expandable
- encourages international collaboration



87

Failure Situations

Mitigation

53 Unstable Requirements

Regular communication

Failure Situations

Mitigation

53 Unstable Requirements

Regular communication

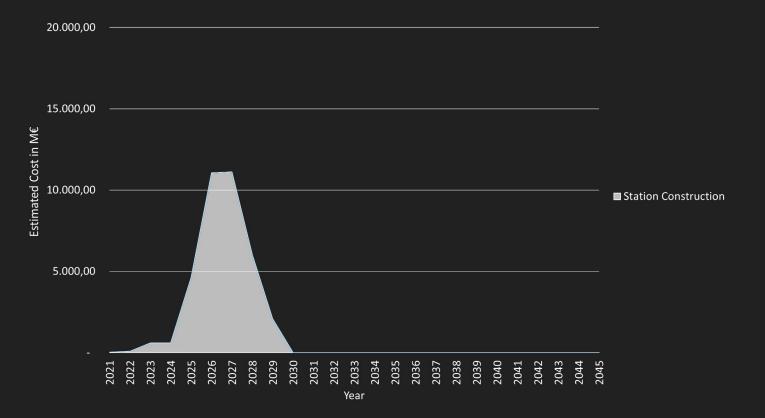
59 Cost overrun

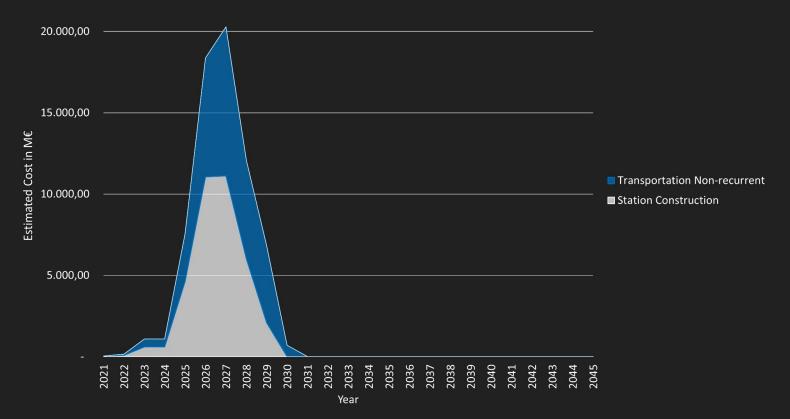
Regular data collection and evaluations of current spending, other time costing methods

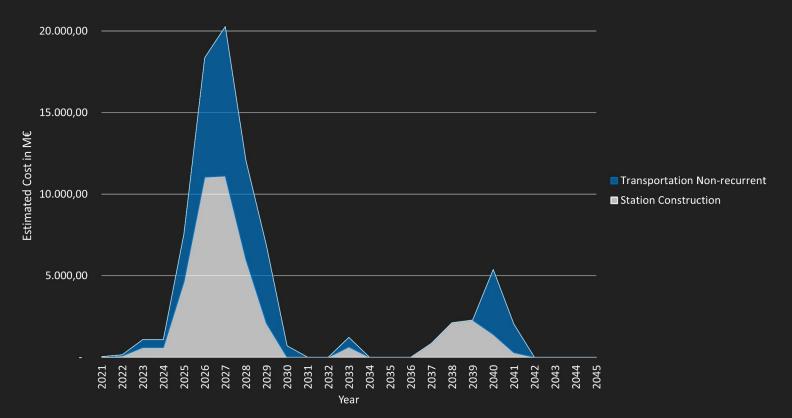
Failure Situations

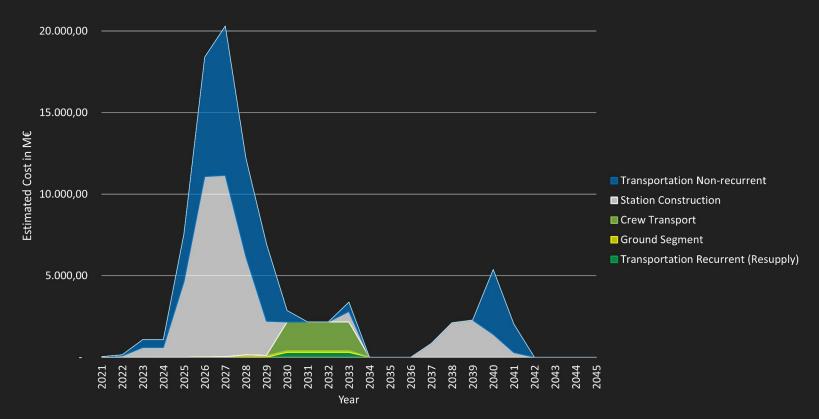
Mitigation

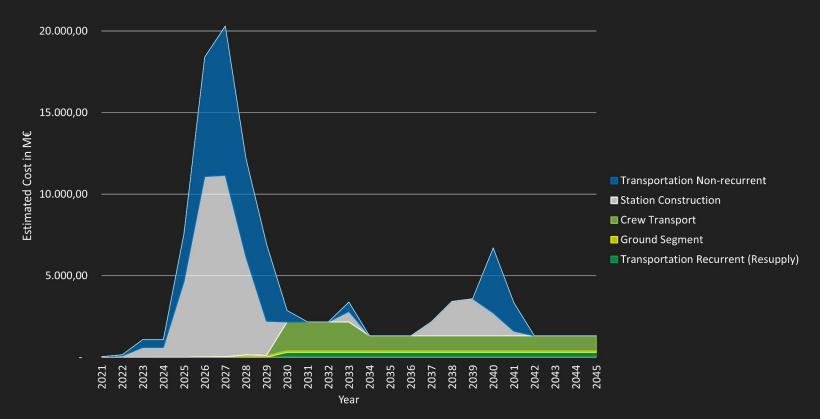
53 Unstable Requirements

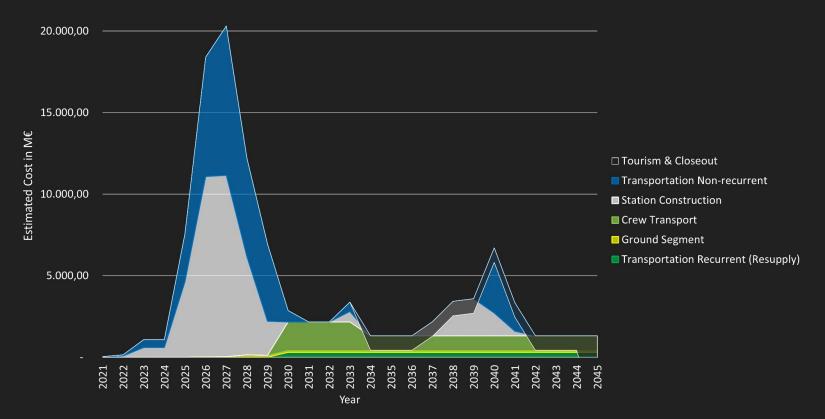

Regular communication

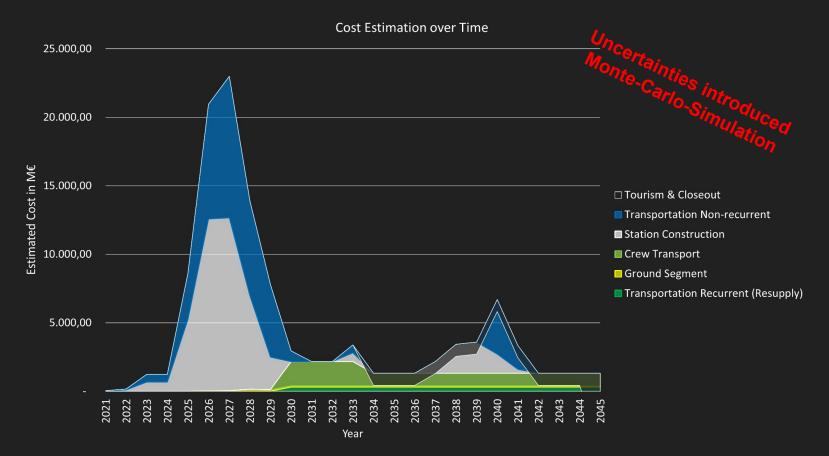

59 Cost overrun

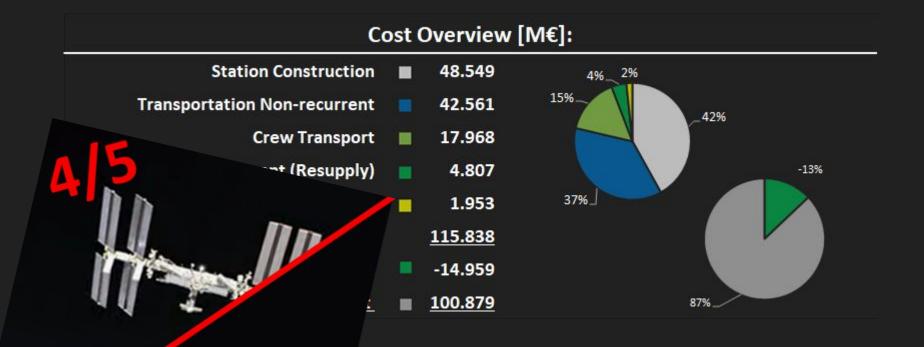

Regular data collection and evaluations of current spending, other time costing methods


60 Schedule overrun


Regular process analysis comparable time mananagement methods



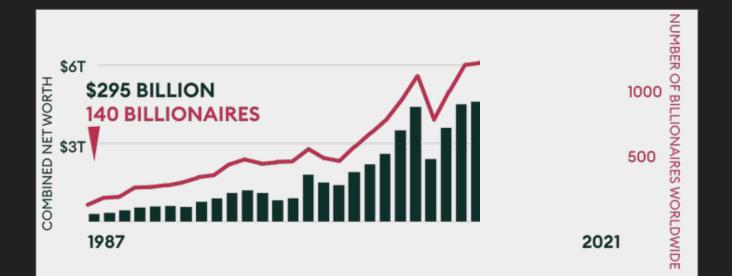


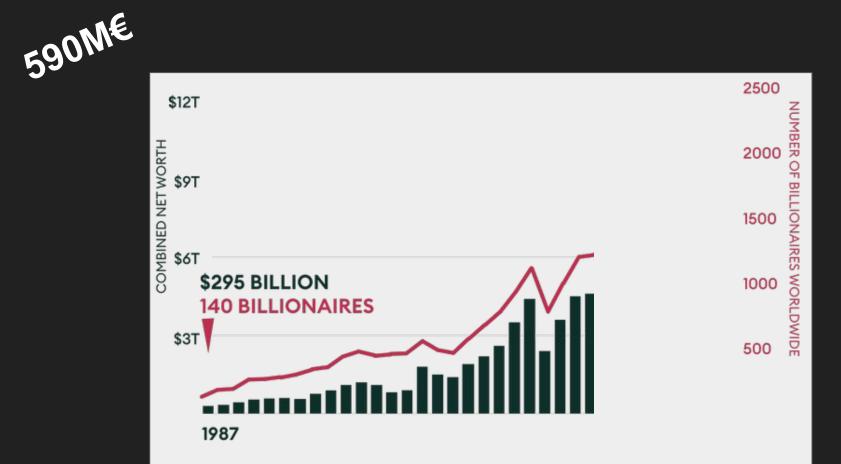


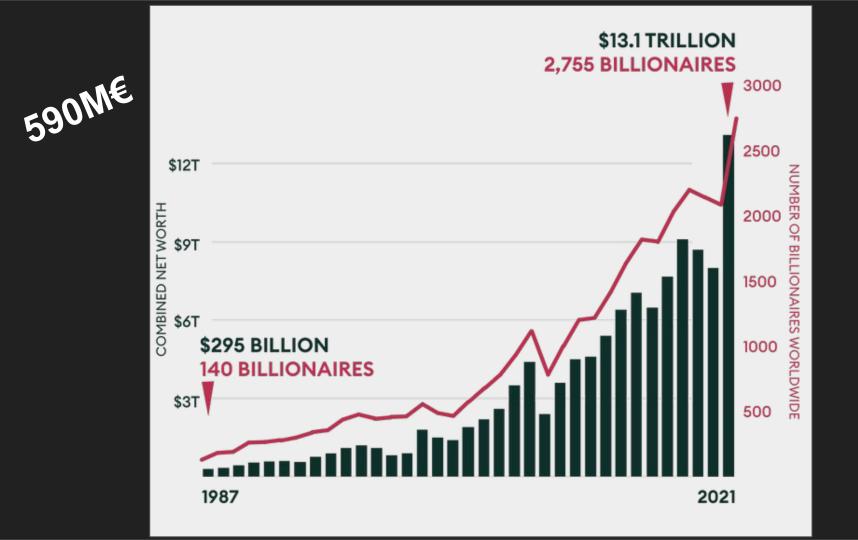
Cost Overview [M€]:				
Station Construction		48.549		
Transportation Non-recurrent		42.561		
Crew Transport		17.968		
Transportation Recurrent (Resupply)		4.807		
Ground Segment		1.953		

Cost Overview [M€]:						
Station Construction		48.549	4%2%			
Transportation Non-recurrent		42.561	15%42%			
Crew Transport		17.968				
Transportation Recurrent (Resupply)		4.807				
Ground Segment		1.953	37%			
Total Mission Cost without earnings		<u>115.838</u>				

Cost Overview [M€]:					
Station Construction		48.549	4%_2%		
Transportation Non-recurrent		42.561	15%42%		
Crew Transport		17.968			
Transportation Recurrent (Resupply)		4.807	-13%		
Ground Segment		1.953	37%		
Total Mission Cost without earnings		<u>115.838</u>			
Tourism & Closeout		-14.959			
Total Mission Cost		<u>100.879</u>	87%		


Starting in 2033:


One week on the moon


590M€

State AC

NASA

DIANA

SCO

B

0

AM

105

CS/

SC

107

A significant step for humankind towards the settlement of celestial bodies beyond the Earth

A significant step for humankind towards the settlement of celestial bodies beyond the Earth

An international effort that extends the boundaries of current - space technology

A significant step for humankind towards the settlement of celestial bodies beyond the Earth

An international effort that extends the boundaries of current - space technology

A strategic resource outpost to support the Lunar Gateway and future endeavours

SPECIAL THANKS!

To the organizers, lecturers and experts, as well as everyone involved in this workshop for this fabulous learning opportunity and for all the new knowledge, techniques and friendships we've gained along the way.

DIANA

111

ELECTRICAL POWER SYSTEM

		TRL	Performance (power density)	Costs	low risk	Environmental requirements	availabilty	political constrains	Sum	Weighting factor [%]
	TRL		-	+	0	+			2	11,1%
	Performance (power density)	+		1	+	-	-	+	3	16,7%
ia	Costs	-	+			-			1	5,6%
Criteria	low risk	0	-	+		+	0	+	3	16,7%
ບັ	Environmental requirements	-	+	+	-		0	17	2	11,1%
	availabilty	+	+	+	0	0			3	16,7%
	political constrains	+	-	+	-	+	+		4	22,2%
			Tot	alnu	mbe	er of	"+"		18	
		1	veigh	nting	of o	ne "+	-" [%	1	5,6%	

		Weighting factor [%]		Solarpanels +RFC		Solarpanels + sec. Batteries		Nuclear Reactor		RTG		Solarpaneldynamic
p).	TRL	11,1%	1	0,11	2	0,22	1	0,11	2	0,22	1	0,11
	Performance (power density)	16,7%	2	0,33	1	0,17	2	0,33	0	0,00	2	0,33
.e	Costs	5,6%	2	0,11	2	0,11	0	0,00	0	0,00	1	0,06
Criteria	low risk	16,7%	2	0,33	2	0,33	0	0,00	2	0,33	1	0,17
5	Environmental requirements	11,1%	0	0,00	0	0,00	2	0,22	2	0,22	0	0,00
	availabilty	16,7%	2	0,33	2	0,33	0	0,00	1	0,17	1	0,17
	political constrains	22,2%	2	0,44	2	0,44	0	0,00	1	0,22	0	0,00
S.	Max perecntage	100%	11	1,67	11	1,61	5	0,67	8	1,17	6	0,83
	Sum	max. 2,00	1	,67	1	,61	(0,67		1,17	(0,83
	Rang			1		2		5		3		4

	Availability	Performance	Costs	Risk	Transfer Time	Sum	Weighting factor [%]		Weighting factor [%]		Direct to moon and back		Direct to moon and back with orbital stage		Refuel in Space at the Lunar Gate		Refuel on Lunar Surface		Rendesvous L1 or L2 -> WSB	Ē	Low Inrust Iransfer to Moon/Lunar Gateway		Bi-Elliptical Transfer
Availability		+	-	-	-	1	10.0%	Availability	10.0%		0.20		0.20	1	0.10		0.00			-	0.20	-	0.20
Performance	-		+	-	-	1	10.0%	Performance	10.0%	-	0.00		0.10	2	0.20	-	0.20			-		-	0.20
Costs	+	-		-	-	1	10.0%	Costs	10.0%	1	0.10	1	0.10	0	0.00	2	0.20	1	0.10	2	0.20	1	0.10
				-				Risk	30.0%	0	0.00	0	0.00	2	0.60	1	0.30	1	0.30	0	0.00	1	0.30
Risk	+	+	+		-	3	30.0%	Transfer Time	40.0%	2	0.80	2	0.80	2	0.80	2	0.80	0	0.00	0	0.00	0	0.00
Transfer Time	+	+	+	+		4	40.0%	Max perecntage	100%		1.10	6	1.20	7	1.70	-	1.50		0.60		0.40	-	0.80
	То	tal n	umbe	er of '	'+"	10		Sum	max. 2,00	-	1.10		1.20		1.70		1.50		0.60	-	0.40	-	0.80
	weig	hting	g of o	ne "+	" [%]	10.0%		Rang			5		4		1		2		7		8		6

PROPULSION - Trade Off - Cargo Trajectory

	Availability	Performance	Costs	Risk	Time	Sum	Weighting factor [%]		Weighting factor [%]	-	Kendesvous L1 or L2 -> WSB		Direct Transfer to moon/Lunar Gateway	1 out Thruct Trancfor	to Moon		Bi-Elliptical Transfer
Availability		-	_	+	+	2	20.0%	Availability	20.0%	2			0.40	2	0.40	-	0.40
Performance	+		-	-	-	1	10.0%	Performance	10.0%	0			0.10	0			0.20
Costs		-				24.46	40.0%	Costs	40.0%	1	0.40	0	0.00	2	0.80	1	0.40
	+	+		+	+	4		Risk	20.0%	1	0.20	1	0.20	0	0.00	1	0.20
Risk	-	+	-		+	2	20.0%	Time	10.0%	0	0.00	2	0.20	0	0.00	0	0.00
Time	-	+	-	-		1	10.0%	Max percentage	100%	4	1.00	-	0.90	4	1.20	-	1.20
	Тс	otal n	umbe	er of '	'+"	10		Sum	max. 2,00		1.00		0.90		1.20	-	1.20
	weig	hting	g of o	ne "+	" [%]	10.0%					2		3		1.20		
				e (Sarl-Sta				Rang			2		5		T		1

PROPULSION - Trade Off - Capsule

	TRL - Availability	Performance (Payload Mass)	Costs/Seat	Risk	Designed Life Time	Sum	Weighting factor [%]		TRL - Availability	Performance (Payload Mass)	Costs/Seat	Risk	Designed Life Time	Sum	Weighting factor [%]
TRL - Availability		-	+	-	+	2	22.2%	TRL - Availability		-	+	-	+	2	22.2%
Performance (Payload Mass)	+		+	0	+	3	33.3%	Performance (Payload Mass)	+		+	0	+	3	33.3%
Costs/Seat	-	-			+	1	11.1%	Costs/Seat	-	-			+	1	11.1%
Risk	+	0	+		-	2	22.2%	Risk	+	0	+		-	2	22.2%
Designed Life Time	-	-	-	+		1	11.1%	Designed Life Time	-	-	-	+		1	11.1%
	Т	otal nu	mber	of "+		9			Т	otal nur	nber	of "+		9	
	wei	ighting	ofon	e "+"	[%]	11.1%			we	ighting o	ofon	e "+"	[%]	11.1%	

PROPULSION - Launcher

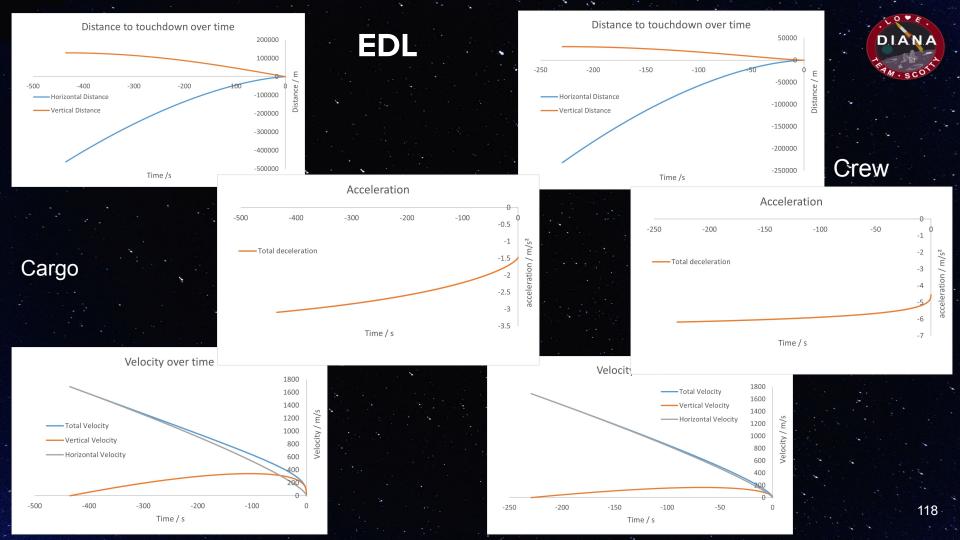
	TRL	Performance	Costs	Risk/ Reliability	Sum	Weighting factor [%]
TRL		+	+	-	2	33.3%
Performance	-		+	-	1	16.7%
Costs	-	-		+	1	16.7%
Risk/ Reliability	+	+	-		2	33.3%
	To	tal nur	nber c	of "+"	6	
	weig	hting o	of one	"+" [%]	16.7%	

0-		
\mathbf{a}		
Ja	IU	U

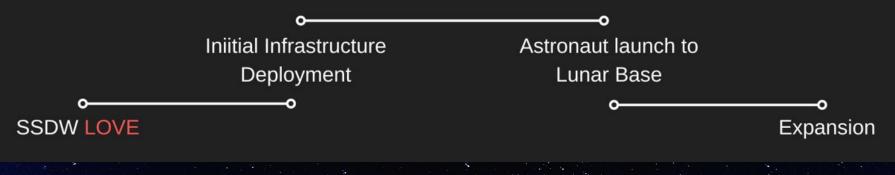
	Weighting factor [%]		Falcon 9		Falcon 9 Heavy		SLS		Ariane 64		Delta IV		Long March 5		Starship
TRL	14.3%	2	0.29	2	0.29	0	0.00	0	0.00	2	0.29	2	0.29	0	0.00
Performance	42.9%	0	0.00	2	0.86	2	0.86	0	0.00	0	0.00	0	0.00	2	0.86
Costs	14.3%	1	0.14	1	0.14	0	0.00	1	0.14	1	0.14	1	0.14	2	0.29
Risk	28.6%	1	0.29	2	0.57	0	0.00	0	0.00	1	0.29	1	0.29	0	0.00
Max percentage	100%	4	0.71	7	1.86	2	0.86	1	0.14	4	0.71	4	0.71	4	1.14
Sum	max. 2,00	(0.71	1	1.86	(0.86	(0.14	(0.71	(0.71		1.14
Rang			4		1		3		5		4		4		2

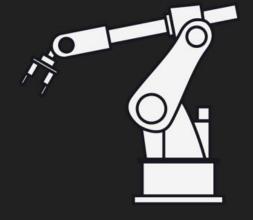
\sim		
('ro	Υ.	N
	M	

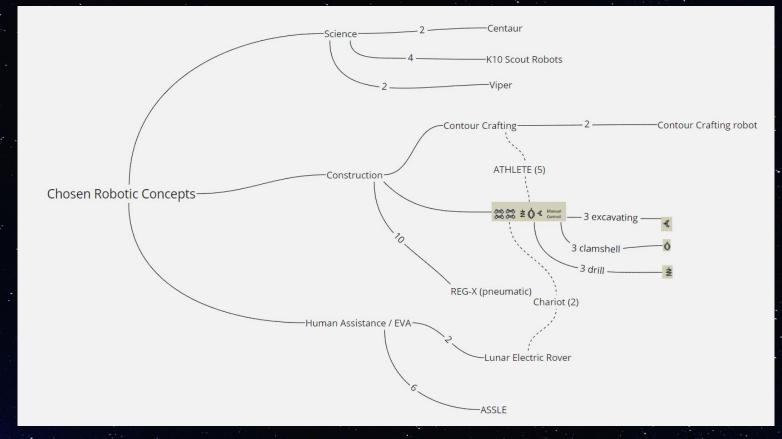
		Weighting factor [%]		Falcon 9 Heavy		SLS		Starship
	TRL	33.3%	2	0.67	0	0.00	0	0.00
1 1	Performance	16.7%	0	0.00	2	0.33	2	0.33
	Costs	16.7%	1	0.17	0	0.00	2	0.33
	Risk/ Reliability	33.3%	2	0.67	0	0.00	0	0.00
	Max perecntage	100%		1.50	2	0.33	4	0.67
•	Sum	max. 2,00	1	1.50	(0.33	(0.67
	Rang			1		3		2


DIANA

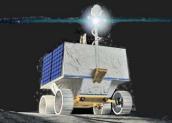
AOCS - Trade Off


		Crite	ria				
	low						weighting factor
	Risk	performance	cost	safety	accuracy	sum	[%]
low Risk		+	+	0	+	3	37.50%
performance			+		-	1	12.50%
cost		-		-	+	1	12.50%
safety	0	e .	+		0	2	25.00%
accuracy	-	+	-	0		1	12.50%
		Total numb	per of	"+"		8	
		weighting of	one "	+" [%]		12.50%	


				3	actua	ator concept	s	
		weighting factor		Reaction Wheels	Ma	gnetorquer		thruster
low	/ Risk	37.50%	2	0.75	1	0.38	1	0.38
perfo	rmance	12.50%	1	0.13	1	0.13	1	0.13
c	ost	12.50%	2	0.25	1	0.13	0	0.00
sa	fety	25.00%	2	0.50	1	0.25	1	0.25
acc	uracy	12.50%	2	0.25	2	0.25	1	0.13
	max. percentage	100.00%		1.88		1.13		0.88
	sum	max. 2,00		1.88		1.13		0.88
	rai	ank		1		2		3


Robotics & EVA

- Shall enable lunar base construction
- Shall assist in human exploration & EVAs
- Shall enable resource prospecting & surface level research



Volatiles Investigating

NASA K-10 Robots

NASA - Centaur 2

DIANA

Group I: Science	Г								Concept								1
Group I. Science	-	weighting factor	SCAI	RAB	Perserveranc	e Lunar Concept	1	Lunokhod 2	concept	YUTU	1-2	P	ragyan	1	/IPER (NASA)	K10 Sco	ut (NASA)
low risk		15.38%	2	0.31	3	0,46	3	0,46		3	0.46	2	0,31	3	0.46	2	0.31
performance	ce	30,77%	2	0,62	3	0,92	1	0,31		2	0,62	1	0,31	3	0,92	3	0,92
cost		0,00%	3	0,00	1	0,00	2	0,00		1	0,00	2	0,00	1	0,00	2	0,00
power		15,38%	3	0,46	1	0,15	1	0,15		2	0,31	3	0,46	2	0,31	2	0,31
mass		7,69%	3	0,23	1	0,08	1	0,08		2	0,15	3	0,23	2	0,15	2	0,15
level of auton	omy	30,77%	3	0,92	3	0,92	1	0,31		3	0,92	3	0,92	3	0,92	3	0,92
	max. percentage	100,00%		2,54		2,54		1,31			2,46		2,23		2,77		2,62
	sum	max. 3,00	2,5	54	2	2,54		1,31		2,46	5		2,23		2,77	2	,62
		rank	3			3		6		4	{		5		1		2
										<u>,</u> .							
Group IIa: Construction								Concepts									
		weighting factor	2000	Manual and Automated Digging Control	D=oc ≥	Manual Control	\$= ~~ ~		ATHLETE +	mm	00 00 ± 0 € Marmal	REG-X (Pneur	matic Excavati	on)	Uting Capability	A Small A	Purpose Super Crane Purpose Mobile Work Platform
low risk		38,46%	1	0,38	1	0,38	1	0,38	2		0,77	1	0,38		C Black Excenting Countility	Carlo Hauling	Capability ng/Laveling Capability
performance	e	23,08%	3	0,69	2	0,46	3	0,69	2		0,46	3	0,69		Rechet Loader Decouting Looding Capa		/Excavator/Leveler Capability
cost		0,00%	1	0,00	2	0,00	1	0,00	1		0,00	2	0,00		Backet Ribert Excenting/Learning Cape	iny to Dellarg	Capublity
power		15,38%	1	0,15	3	0,46	1	0,15	2		0,31	3 0,46 2 •		Ż triling Capability	Ó Clamite	fl Digger	
mass		7,69%	1	0,08	3	0,23	1	0,08	2		0,15	2	0,15				
level of auton	omy	15,38%	2	0,31	1	0,15	3	0,46	3		0,46	3	0,46				
	max. percentage	100,00%		1,62		1,69	1	1,77			2,15		2,15				
	sum	max. 3,00	1,6	2		,69		1,77		2,15		1	2,15				
		rank	4			3		2		1			1				
				· · · ·			•					· · · .					
Group IIb: 3D-Printing										Concept	ts						
	Γ	weighting factor	Contour Craftin	g Robot on ATH	LETE Rover	D-Shape Techno	logy (ESA)	ESA 3D printing	over Concept	Solar 3D P	rinting + support veh	icle for laying do	wn regolith	Building Blocks	3D Printing + support v	ehicle for laying	down regolith
low risk		38,46%	2		0,77	1	0,38	0	0,00		2	0,77	(1	0,	38
performanc	e	23,08%	3		0,69	2	0,46	1	0,23		2	0,46	5		2	0,	46
cost		0,00%	1		0,00	1	0,00	2	0,00		2	0,00)		1	0,	00
power		15,38%	3		0,46	2	0,31	1	0,15		2	0,31			2	0,	31
mass		7,69%	1		0,08	2	0,15	3	0,23		1	0,08			1		08
level of autono	omy	15,38%	3		0,46	3	0,46	3	0,46		2	0,31			3		46
	max. percentage	100,00%			2,46		1,77		1,08			1,92	2			1,	69
	sum	max. 3,00		2,46		1,77		1,0			1,9				1,69		
	187	rank		1		3		5			2				4		

I: Human Assista	nce & EVA (unpressuri	sed)	Concepts						
all and the second	and the second	weighting factor	Lunar Roving	Vehicle (LRV)	Chariot (NASA)				
low ris	k	15,38%	3	0,46	2	0,31			
performa	nce	38,46%	1	0,38	3	1,15			
cost		0,00%	3	0,00	1	0,00			
power	r	23,08%	2	0,46	3	0,69			
mass		7,69%	3	0,23	2	0,15			
level of auto	onomy	15,38%	0	0,00	1	0,15			
	max. percentage	100,00%		1,54		2,46			
	sum	max. 3,00	1,	54	2,-	46			
	r	ank		2		1			

Group III: Human Assistance & EVA (press	irised)	Concepts								
	weighting factor	PRC + A	THLETE	JAXA Lun	ar Cruiser	Lunar Electric Rover (NASA)				
low risk	38,46%	2	0,77	1	0,38	2	0,77			
performance	23,08%	3	0,69	3	0,69	3	0,69			
cost	0,00%	2	0,00	1	0,00	2	0,00			
power	15,38%	1	0,15	3	0,46	2	0,31			
mass	7,69%	2	0,15	2	0,15	3	0,23			
level of autonomy	15,38%	2	0,31	3	0,46	2	0,31			
max. percenta	ge 100,00%		2,08		2,15		2,31			
sum	max. 3,00	2,	08	2,	15	2,31				
	rank	3			2	1				

Group IV: Space Suits	low risk	performance	cost	mass	mobility	sum	weighting factor [%]
low risk	3	+	+	+	+	4	40,00%
performance			+	+	+	3	30,00%
cost		100	8	137		0	0,00%
mass		:=:	+		=	1	10,00%
mobility	2.61	-	+	+		2	20,00%
		Total		10			
		weighti	92	10,00%			

Group IV: Space Suits	0		Concepts							
		weighting factor	A7LB ((Apollo)	Planetary	Space Suit	A	ASSLE		
low risk		40,00%	3	1,20	0	0,00	2	0,80		
performan	performance		1	0,30	3	0,90	3	0,90		
cost		0,00%	2	0,00	1	0,00	2	0,00		
mass		10,00%	1	0,10	3	0,30	3	0,30		
mobility		20,00%	1	0,20	3	0,60	3	0,60		
	max. percentage	100,00%		1,80		1,80		2,60		
	sum max. 3,00 rank		1,/	.80	1,	,80	7	2,60		
			2		1	2	1			

				Pow	ver System Trad	eOffs - Robotics					
				Criteria	-1555) 20 - 10 - 10 - 10 - 10 - 10 - 10 - 10						N
	low risk	performance (power density)	cost	Environmental requirements	availability	political constrains	lifetime	Safety	Reliability	sum	weighting factor [%]
low risk		and the set of the particular states	+	+	100 <u>-</u> 100 - 100	and the second s	-	+	+	4	12,90%
performance (power density)	+		+		-	+	0	+	0	4	12,90%
cost	14	(±		14 (H)	14	-	-	-	1 (4 9)	0	0,00%
Environmental requirements	12	+	+		0	14 C	+	+	+	5	16,13%
availability	+	+	+	0		-	+	+	+	6	19,35%
political constrains	+	-	+	+	+		-	-	((=))	4	12,90%
lifetime	+	0	+		-	+		+	0	4	12,90%
Safety	-	-	+		194	+	-		0	2	6,45%
Reliability	-	0	+		-	+	0	0		2	6,45%
Sector search fair		Total number of "+"								31	
		weighting of one "+" [%]								3,23%]

그 회사는 제품에 가지 않는 것 같아. 정말 정말 것 같아. 영국 부장의 정말 하셨다.

l.	-			P	ower System TradeOffs	- Robotics		Power System TradeOffs - Robotics										
6	we are the second se	1100 million (110	100		concepts			15										
<u>(</u>	weighting factor [%]	Solarpanels		Solarpanels + Second	dary batteries	RTG	i	RTG + Secon	idary batteries									
low risk	12,90%	3	0,39	3	0,39	3	0,39	3	0,39									
performance (power density)	12,90%	2	0,26	2	0,26	3	0,39	2	0,26									
cost	0,00%	2	0,00	2	0,00	1	0,00	1	0,00									
Environmental requirements	16,13%	1	0,16	1	0,16	2	0,32	3	0,48									
availability	19,35%	3	0,58	3	0,58	2	0,39	2	0,39									
political constrains	12,90%	2	0,26	3	0,39	2	0,26	2	0,26									
lifetime	12,90%	2	0,26	2	0,26	3	0,39	3	0,39									
Safety	6,45%	3	0,19	3	0,19	2	0,13	2	0,13									
Reliability	6,45%	2	0,13	1	0,06	3	0,19	3	0,19									
max. percentage	e 87,10%		2,23		2,29		2,45		2,48									
sum	max. 3,00	2,23		2,29		2,45	_ ز	2,48										
	rank	4		3		2		1										

Facts

- TRLs
- Science Payload
- Height / reach of ATHLETE 2nd gen: 15,5 m / payload mass: 14,5 t

Assumptions

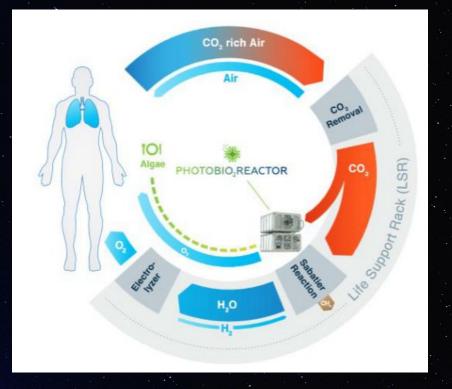
- Power Systems: RTG, Sec. Batteries, Solar Arrays, Fuel Cells.
- Nozzle width of 3D printing extruder: 28 mm
- Extruder velocity: 0,6 m/s
- Velocity of rovers: 1-5 m/s
- Temperatures to be covered
- Assumptions on regolith

Calculations include 30 % margin

- Duration for 3D printing of habitat: ~6 months
- Mass of regolith needed: ~ 800 t
- Mass of regolith excavatable/transportable within 2 yrs for 10 REG-X: 1200 t
- Max. coverable distance for rovers

		N 1 N								
							1			
Name of the component	Quantity [-]	Mass Static per component [kg]	Components Mass Static [kg]	Mass Consumable [kg]	Power Consumption [W]	Power Dissipation [W]	"Doesn't fit"	Margin [%]	Mass w margin Class	
VIPER	2	430	860	C	0			30	1118	1
K-10	4	80	320	C	200			30	416	1
Centaur 2 + Robonaut 2	2	500	1000	C	175			30	1300	1
REG-X Pneumatic Traverse Mining Rover	10	2000	20000	C)			30	26000	1
Chariot	2	1000	2000	C)			30	2600	1
Hauling Module (Chariot)	2	200	400	C	0			30	520	1
Robotic arm integrating drill, clamshell, excavating, gripping hand	3	1000	3000	C	0			30	3900	1
ATHLETE 2nd gen.	5	2340	11700	C	0			30	15210	1
Contour crafting robot	2	700	1400	C	0			30	1820	1
Lunar Electric Rover	2	4000	8000	C	0			30	10400	1
ASSLE Space Suit	6	60	360	C	0			30	468	1
SUMMARY	40	12310	49040	C	375		0	SUMA	63752	

RADIATION


TABLE 43: Eq. dose for different Durations

	per Day	per missi	Year/	per
Dose	0,3-0,4 mSv [30]	144m		

- Daily Limit: 8,5 mSv/d
- 30-Day Limit: 250 mSv
- Annual Dose: 500 mSv
- Career Limit: 1-4 Sv (Age and Gender
- Specific)

	No Shielding	Regolith Shielding	Bi-Layer Shielding
Thickness	[-]	$200g/cm^2$	Regolith $150g/cm^2$ Polyethylene $30g/cm^2$ &Polyethylene $20g/cm^2$
GCR 1977 SPE 1972	1,15 mSv/day 8,2e5 mSv	0,6 mSv/day 41,68 mSv	0,2835 mSv/day 2,61mSv

ECLSS

• esa → ADVANCED CLOSED LOOP SYSTEM Advanced Closed Loop System produces water from carbon dioxide. The water then is used to produce oxygen for astronauts. *TTTTTT* AIR + CO. -> co2 H₂0 water CCA CO₂ concentration assembly AIR RECYCLING STEP BY STEP water carbon dioxide CO₂ reduction assembly - Sabatier reactor L CH₄ methane carbon dioxide from the air. ACLS can generate about 50% The Carbon dioxide Reprocessing of the water needed for oxygen Assembly (CRA) is a Sabatier reactor production on the Space Station. mixing hydrogen and carbon dioxide to #LIVEbetter European Space Agency

Photobioreactor (PBR)

plasma pyrolysis production PPA $2CH_4 \xrightarrow{\Delta} C_2H_2 + 3H_2$ DIANA

- LSS essential and life critical
 - -> Water Recovery System (WRS) and Advanced Closed Loop System: both TRL 9
- Improving the recycling process regarding resource efficiency with a tested system
 - -> Greenhouse: TRL 7
- Further development of a concept to close the resource circly even more
 - -> MELiSSA project: TRL 5 in development but already partly tested

ECLSS

Greenhouse

Open Greenhouse

- the same atmospheric conditions as for humans
- psychological advantage of have time next to plants (also strawberries maybe and greenery/colors)
- not as efficient as the closed concept

- humidity/water vapor->clean water
- food production
- psychological aspect (plants, colors, "zen garden")
- CO2 removal
- O2 production

Closed Greenhouse different atmospheric conditions than for humans

- higher CO2 partial pressure
- lower O2 partial pressure
- special light and temperature
- special mask needed for humans to in there and work on the plants (maintenance?)
- high complexity of the system
- high efficiency

ECLSS

2. Classification

Type of technology

		Cy	cle closu	ire
		Oxygen	Water	Carbon
	Storage			
	Physico-chemical	х	х	
	Hybrid	х	х	(X)
)	Biological	Х	Х	х

Physico-chemical

- + Well understood
- Compact
- + Low maintenance
- + Quick response
- No food production

Biological

- + Allows food production
- Less well understood
- Large volume
- Maintenance intensive
- Slow response

RADIO ASTRONOMY

		5			8	сс	ncept	ts	2.		
					Pł	nased Antenna			Pha	sed Antenna Array	
		weigth	C	Crater Antenna A		Array	Crater Antenna VLBI		VLBI		
high TR	L	5.56%	1	0.06	2	0.11	1	0.06	1	0.06	
high perform	ance *	27.78%	1	0.28	1	0.28	2	0.56	2	0.56	
low cos	t	0.00%	1	0.00	1	0.00	0	0.00	0	0.00	
low risk	c	5.56%	1	0.06	2	0.11	1	0.06	1	0.06	
high Sol	0	16.67%	0	0.00	2	0.33	0	0.00	1	0.17	
high sensit	ivity	27.78%	1	0.28	1	0.28	2	0.56	2	0.56	
low Dol		16.67%	0	0.00	2	0.33	0	0.00	1	0.17	
max. percer	ntage	100.00%	0	0.67	2	1.44	0	1.22	2	1.56	
	sum max. 2,00			0.67		1.44		1.22		1.56	
rank			4		2		3		1		

Phased Array Antennas: computer-controlled antenna array \rightarrow can be electronically steered to point in different directions without moving the antennas

RADIO ASTRONOMY

Mission Development:

- starting with 3 6 PAA sites, from there every year up to 8 additional sites → gradual increase of sensitivity & baseline distances, therefore resolution
- As soon as there's enough crew capacity, astronomers can join and work from the station directly

Performance Estimations for a 500 km Baseline

- 110 4 GHz: 43 38 mas
- 1.4 GHz: 110 mas
- 200 1 MHz: 0.8 arcsec 115 arcsec

For comparison: human eye has 40 arcsec resolution

Possible survey topics for the telescope:

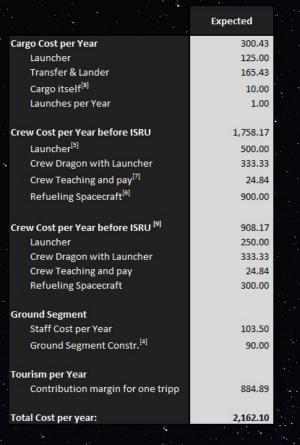
- investigation of the 21cm HI line in a radio noise free environment
- investigation of the red-shifted 21cm HI line for re-ionization period research
- investigation of the solar system planets radio emission
- investigation of the suns radio emission

RISK MATRIX

DIAN	F	.LOFE.	
		DIAN	
1 - 180			
	ż	1 - 19	

	ID	Failure situations	Probality	Severity					32	Loss of power in communication center	4	2	
Robotics & EVA	01	Fail of autonomous system	3	3	-				33	Destruction of antenna due to micrometeorites	2	3	
	02	Malfunction of 3D printer on rover	4	1				Communication		Damage com system: manuf., transp., and depl. errors	2	3	
	03	Robot falls over	1	3	100				1.2.2	destruction of com satellites due to micro meteorites	1	5	
	04	Failure of secondary batteries	2	2					36	Loss of com. with Earth due to failure of sat. const.	1	5	
	05	Blocking of mechanisms due to lunar dust	4	2					37	Loss of com. with Earth due to failing Grd. Station	2	4	
	06	A solar panel does not unfold	2	3					38	Conflict within the crew	1	4	
	07	Solar panels severely damaged by meteorites	1	4			Human Factor		39	Error in data reporting impacts the mission	1	3	
EPS	09	Solar panels partially damaged by meteorites	2	3					40	Manual takeover mistake	1	4	4
	09	Unknown illumination factors	2	4	· ·			provide a	41	Rocket explosion - crew	1	5	
	10	Orbital maneuver failure	1	3				Propulsion & Transport	42 43	Rocket explosion - cargo Thrusters malfunction - cargo vehicle	2	3	4
Mission Analysys	11	Launcher failure	1	4	10 A 11			mansport	45	Thrusters malfunction - crew vehicle	2	4	
initial jojo	12	Cargo delivery delay	3	3					44	Destruction of electronics due to radiation	2	5	-ii
AOCS& EDL	13	Hard landing with cargo	2	3				Radiation		Overdose of radiation during EVA due to solar activity	3	3	
	14	Hard landing with crew	2	5				·	47	Total annual dose of radiation is over exceeded	3	3	
	15	Take off - ignition problems (cargo vehicle)	2	3	•				48	Losing a telescope due to deploy mech. failure	2	2	
	16	Take off - ignition problems (with crew)	2	4	- * * ·				49	Micrometeorites damage the telescope	2	2	
	17	Moon base depressurization	2	5				Astronomy	50	Losing a telescope due to power failure	4	3	
	18	Water tank leak	1	3					51	Failure of components due to galactic radiation	4	2	
	19	Losses in food production outage	1	3					52	Failure of components due to solar energetic part.	3	3	
ECLSS	20	LSS malfunction	3	2					53	Unstable Requirements	5	4	
	21	Power outage	2	4	÷				54	Ambitious performance requirements	3	3	
	22	LSS modular contamination	4	2				System Enginnering	55	Reliance on advances in low TLR technology	4	2	
Design and Inner	23	Design concept does not work	3	3				System Enginitering		Lack of synergy between subsystems	4	4	
Architecture	24	Radiation overdose due to windows	3	3					57	Underestimation of the problem scale	4	3	
	25	Mechanical failure of louver radiator	3	3					58	Wrong data from one subsystem impacts the rest	4	3	
TCS	26	Heater malfunction	1	5	•				59	Cost overrun Schedule overrun	4	4	
	27	Flute pumps stop working	2	3					61	Loss of international support	4	4	
	28	Structural damage due to debris impact	2	4				Project	62	Documentation mistake	2	4	
	29	Structural damage due to seismic loading	1	4	19 - 18 - 19 - 19 - 19 - 19 - 19 - 19 -			Management	63	Economic crisis - project discontinuation	1	5	
Mechanism	30	Structural damage of 3D printed construction	2	4					64	Supplier or subcontractor failure	3	4	
	31	- · ·	1	4	3				65	Marks ups due to economic situation	3	3	
CONTRACTOR FOR ALL													-

Cost per System


System Cost Ove	erview [M€]	
System	Per Unit Price	Development Cost
Space Station	6,944.33	39,156.85
Robotic Systems	-	8,950.78
Crew Lander	2,239.97	17,324.63
Cargo Transfer & Lander not		
reusable	165.43	9,161.01
Reusable Crew Transfer	-	10,510.13
Crew Dragon Modified	730.71	1,559.07
Falcon Heavy	125.00	
Ground Station	30.00	-

Assumption/ Reference Number	Value	Description	Source	Calculation
[1]	300	Number of Ground Operation Staff for ISS = 300	Prof. Ewald	6 - 8 Staff members per Position, at Houston 15 Positions in Control Room. And 80 Staff members in Back rooms. Columbus Lab is 2 - 3 Positions.
[2]	2; 2,3	"Cargo Transfer & Lander not reusable" und "Reusable Crew Transfer"	Dr. Eilingsfeld und Hr. Millin	Agreement to set the Non reusable Cargo Lander Specification to 2. Reusable Crew Transfer was choosen by Cost & Risk team to be set at 2,3 instead of 2,39 for a planetary transport vehicle.
[3]	1000 kg	"Modified Crew Dragon"	Assumption	Upgrade to Crew Dragon taken as a 1000kg Addition which was calculated, Crew Dragon price added, but not adjusted for included falcon 9 cost. Will be taken as an estimation of surplus cost of falcon heavy human rated certification with SpaceX
[4]	30M€	Cost of Ground Station	Wikipedia	Cebreros 35 Meter Dish Ground Station CEB (DSA 2), here build over three years
. [5]	375M€	Cost of launchers for refueling crew transfer vehicle	Subsystem Information	We need three extra Launches to fuel the transfer vehicle
[6]	900M€	Cost of refueling Spacecraft	Assumption	roughly in the order of one crew dragon, minus a launcher for a refueling spacecraft
[7]	24,84M€	Cost of Astronaut Training for four Astronauts per year	Assumption	five staff support per Astronaut, 2 years training + one year in orbit
[8]	10M€	Cost of Resupplies	Assumption	Roughly 8 tons of ressuplies, mostly some food, water, clothes, meds etc.
[9]	550M€	Reduction Launcher and Refueling Spacecraft 3 to 1	Assumption	ISRU on moon surface up and running, only one refueling needed in LEO, instead of three
[10]	-4340M€	Selling 2nd Station	Assumption	Minimum Value for selling 2nd station for residual value. Resources of 1st station + residual usability surpasing planned operational lifetime not even taken into account.
[11]	100 <mark>%</mark> Margin	Toursim	Assumption	Luxury good, higher price can actually have positive influence on demand due to anormal price elasticity.
[12]	Prices	Per Unit Price based on AMCM calculation	Assumption	Mass adjustments mainly effect first production badge, prices will not be adjusted with Argo, but stay as fixed

Cost

	Station Construction	Transportation Non-recurrent	Crew Transport	Transportation Recurrent (Resupply)	Ground Segment		Fourism & Closeout	Total
2021	23.17	19.17						42.34
2022	92.68	76.70						169.37
2023	675.76	559.26						1,235.02
2024	675.76	559.26						1,235.02
2025	5,255.77	3,363.58						8,619.35
2026	12,576.47	8,361.50			30.00			20,967.97
2027	12,651.94	10,331.72	6.21		30.00			23,019.87
2028	6,845.77	6,913.67	12.42		133.50			13,905.36
2029	2,369.98	5,279.66	18.63		103.50			7,771.77
2030	-	784.38	1,758.17	300.43	103.50			2,946.48
2031	-	-	1,758.17	300.43	103.50			2,162.10
2032	-	-	1,758.17	300.43	103.50			2,162.10
2033	639.05	580.85	1,758.17	300.43	103.50			3,382.00
2034	-	-	908.17	300.43	103.50	-	884.89	427.21
2035	-	-	908.17	300.43	103.50	-	884.89	427.21
2036	-	-	908.17	300.43	103.50	-	884.89	427.21
2037	857.32	-	908.17	300.43	103.50	-	884.89	1,284.53
2038	2,115.08	-	908.17	300.43	103.50	-	884.89	2,542.29
2039	2,279.52	-	908.17	300.43	103.50	-	884.89	2,706.73
2040	1,403.98	3,982.53	908.17	300.43	103.50	-	884.89	5,813.72
2041	288.44	1,742.56	908.17	300.43	103.50	-	884.89	2,458.21
2042	-	-	908.17	300.43	103.50	-	884.89	427.21
2043	-	-	908.17	300.43	103.50	-	884.89	427.21
2044	-	-	908.17	300.43	103.50	-	884.89	427.21
2045	-	-	908.17	300.43	103.50	-	5,225.09	- 3,912.99
Total:	48,750.68	42,554.84	17,968.03	4,806.82	1,953.00	2	14,958.84	101,074.54

One week on the	e moon	
Launcher and Transport for one Person	294.44	
Supplies roughly for one Person	negligible	
Training for one Person (2 month)	0.52	11
100% Margin = partial contribution margin ^[11]	294.96	
Total Price per Person:	589.92	
Comments:	Just three at a time + pilot Only starting after 2033 and ISRU	

OUTREACH STRATEGY - EDUCATION!

Science to the Moon!

DIANA

sco

AM

Draw the D.I.A.N.A moon base!

Design a lunar module! 0 .

DIANA